Timezone: »

Can contrastive learning avoid shortcut solutions?
Joshua Robinson · Li Sun · Ke Yu · Kayhan Batmanghelich · Stefanie Jegelka · Suvrit Sra

Fri Dec 10 08:30 AM -- 10:00 AM (PST) @ None #None

The generalization of representations learned via contrastive learning depends crucially on what features of the data are extracted. However, we observe that the contrastive loss does not always sufficiently guide which features are extracted, a behavior that can negatively impact the performance on downstream tasks via “shortcuts", i.e., by inadvertently suppressing important predictive features. We find that feature extraction is influenced by the difficulty of the so-called instance discrimination task (i.e., the task of discriminating pairs of similar points from pairs of dissimilar ones). Although harder pairs improve the representation of some features, the improvement comes at the cost of suppressing previously well represented features. In response, we propose implicit feature modification (IFM), a method for altering positive and negative samples in order to guide contrastive models towards capturing a wider variety of predictive features. Empirically, we observe that IFM reduces feature suppression, and as a result improves performance on vision and medical imaging tasks.

Author Information

Joshua Robinson (MIT)
Li Sun (University of Pittsburgh)
Ke Yu (University of Pittsburgh)

NeurIPs 2020 workshop papers: * Context-aware Self-supervised Learning for Medical Images Using Graph Neural Network. Medical Imaging Meets NeurIPS, NeurIPS, 2020 * Hyperbolic Molecular Representation Learning for Drug Repositioning. Machine Learning for Molecules, NeurIPS, 2020 * Hierarchical Amortized Training for Memory-efficient High-Resolution 3D GAN. Medical Imaging Meets NeurIPS, NeurIPS, 2020

Kayhan Batmanghelich (Massachusetts Institute of Technology)
Stefanie Jegelka (MIT)

Stefanie Jegelka is an X-Consortium Career Development Assistant Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics and an affiliate of the Institute for Data, Systems and Society and the Operations Research Center. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.

Suvrit Sra (MIT)

Suvrit Sra is a Research Faculty at the Laboratory for Information and Decision Systems (LIDS) at Massachusetts Institute of Technology (MIT). He obtained his PhD in Computer Science from the University of Texas at Austin in 2007. Before moving to MIT, he was a Senior Research Scientist at the Max Planck Institute for Intelligent Systems, in Tübingen, Germany. He has also held visiting faculty positions at UC Berkeley (EECS) and Carnegie Mellon University (Machine Learning Department) during 2013-2014. His research is dedicated to bridging a number of mathematical areas such as metric geometry, matrix analysis, convex analysis, probability theory, and optimization with machine learning; more broadly, his work involves algorithmically grounded topics within engineering and science. He has been a co-chair for OPT2008-2015, NIPS workshops on "Optimization for Machine Learning," and has also edited a volume of the same name (MIT Press, 2011).

More from the Same Authors