Timezone: »
We consider offline reinforcement learning (RL) with heterogeneous agents under severe data scarcity, i.e., we only observe a single historical trajectory for every agent under an unknown, potentially sub-optimal policy. We find that the performance of state-of-the-art offline and model-based RL methods degrade significantly given such limited data availability, even for commonly perceived "solved" benchmark settings such as "MountainCar" and "CartPole". To address this challenge, we propose PerSim, a model-based offline RL approach which first learns a personalized simulator for each agent by collectively using the historical trajectories across all agents, prior to learning a policy. We do so by positing that the transition dynamics across agents can be represented as a latent function of latent factors associated with agents, states, and actions; subsequently, we theoretically establish that this function is well-approximated by a "low-rank" decomposition of separable agent, state, and action latent functions. This representation suggests a simple, regularized neural network architecture to effectively learn the transition dynamics per agent, even with scarce, offline data. We perform extensive experiments across several benchmark environments and RL methods. The consistent improvement of our approach, measured in terms of both state dynamics prediction and eventual reward, confirms the efficacy of our framework in leveraging limited historical data to simultaneously learn personalized policies across agents.
Author Information
Anish Agarwal (MIT)
Abdullah Alomar (Massachusetts Institute of Technology)
Varkey Alumootil (Massachusetts Institute of Technology)
Devavrat Shah (Massachusetts Institute of Technology)
Devavrat Shah is a professor of Electrical Engineering & Computer Science and Director of Statistics and Data Science at MIT. He received PhD in Computer Science from Stanford. He received Erlang Prize from Applied Probability Society of INFORMS in 2010 and NeuIPS best paper award in 2008.
Dennis Shen (MIT)
Zhi Xu (MIT)
Cindy Yang (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 Spotlight: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2021 : Causal Matrix Completion »
Anish Agarwal -
2021 : Regret, stability, and fairness in matching markets with bandit learners »
Sarah Cen · Devavrat Shah -
2022 : A Causal Inference Framework for Network Interference with Panel Data »
Sarah Cen · Anish Agarwal · Christina Yu · Devavrat Shah -
2022 : On counterfactual inference with unobserved confounding »
Abhin Shah · Raaz Dwivedi · Devavrat Shah · Gregory Wornell -
2021 Poster: A Computationally Efficient Method for Learning Exponential Family Distributions »
Abhin Shah · Devavrat Shah · Gregory Wornell -
2021 Poster: Regulating algorithmic filtering on social media »
Sarah Cen · Devavrat Shah -
2021 Poster: Change Point Detection via Multivariate Singular Spectrum Analysis »
Arwa Alanqary · Abdullah Alomar · Devavrat Shah -
2020 Poster: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Poster: Rethinking the Value of Labels for Improving Class-Imbalanced Learning »
Yuzhe Yang · Zhi Xu -
2020 Spotlight: Estimation of Skill Distribution from a Tournament »
Ali Jadbabaie · Anuran Makur · Devavrat Shah -
2020 Poster: Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation »
Devavrat Shah · Dogyoon Song · Zhi Xu · Yuzhe Yang -
2020 Demonstration: tspDB: Time Series Predict DB »
Anish Agarwal · Abdullah Alomar · Devavrat Shah -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 : Coffee break, posters, and 1-on-1 discussions »
Yangyi Lu · Daniel Chen · Hongseok Namkoong · Marie Charpignon · Maja Rudolph · Amanda Coston · Julius von Kügelgen · Niranjani Prasad · Paramveer Dhillon · Yunzong Xu · Yixin Wang · Alexander Markham · David Rohde · Rahul Singh · Zichen Zhang · Negar Hassanpour · Ankit Sharma · Ciarán Lee · Jean Pouget-Abadie · Jesse Krijthe · Divyat Mahajan · Nan Rosemary Ke · Peter Wirnsberger · Vira Semenova · Dmytro Mykhaylov · Dennis Shen · Kenta Takatsu · Liyang Sun · Jeremy Yang · Alexander Franks · Pak Kan Wong · Tauhid Zaman · Shira Mitchell · min kyoung kang · Qi Yang -
2019 Poster: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Oral: On Robustness of Principal Component Regression »
Anish Agarwal · Devavrat Shah · Dennis Shen · Dogyoon Song -
2019 Tutorial: Synthetic Control »
Alberto Abadie · Vishal Misra · Devavrat Shah -
2018 Poster: Q-learning with Nearest Neighbors »
Devavrat Shah · Qiaomin Xie -
2017 : Poster Session »
Jaleh Zand · Kun Tu · Michael (Tao-Yi) Lee · Ian Covert · Daniel Hernandez · Zahra Ebrahimzadeh · Joanna Slawinska · Akara Supratak · Miao Lu · John Alberg · Dennis Shen · Serene Yeo · Hsing-Kuo K Pao · Kian Ming Adam Chai · Anish Agarwal · Dimitrios Giannakis · Muhammad Amjad -
2017 Workshop: Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges »
George H Chen · Devavrat Shah · Christina Lee -
2017 Poster: Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation »
Christian Borgs · Jennifer Chayes · Christina Lee · Devavrat Shah -
2016 Poster: Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering »
Dogyoon Song · Christina Lee · Yihua Li · Devavrat Shah -
2014 Workshop: Analysis of Rank Data: Confluence of Social Choice, Operations Research, and Machine Learning »
Shivani Agarwal · Hossein Azari Soufiani · Guy Bresler · Sewoong Oh · David Parkes · Arun Rajkumar · Devavrat Shah -
2014 Poster: Hardness of parameter estimation in graphical models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2014 Poster: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2014 Spotlight: A Latent Source Model for Online Collaborative Filtering »
Guy Bresler · George H Chen · Devavrat Shah -
2014 Poster: Learning Mixed Multinomial Logit Model from Ordinal Data »
Sewoong Oh · Devavrat Shah -
2014 Poster: Structure learning of antiferromagnetic Ising models »
Guy Bresler · David Gamarnik · Devavrat Shah -
2013 Workshop: Crowdsourcing: Theory, Algorithms and Applications »
Jennifer Wortman Vaughan · Greg Stoddard · Chien-Ju Ho · Adish Singla · Michael Bernstein · Devavrat Shah · Arpita Ghosh · Evgeniy Gabrilovich · Denny Zhou · Nikhil Devanur · Xi Chen · Alexander Ihler · Qiang Liu · Genevieve Patterson · Ashwinkumar Badanidiyuru Varadaraja · Hossein Azari Soufiani · Jacob Whitehill -
2013 Poster: A Latent Source Model for Nonparametric Time Series Classification »
George H Chen · Stanislav Nikolov · Devavrat Shah -
2013 Poster: Computing the Stationary Distribution Locally »
Christina Lee · Asuman Ozdaglar · Devavrat Shah -
2012 Poster: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2012 Spotlight: Iterative ranking from pair-wise comparisons »
Sahand N Negahban · Sewoong Oh · Devavrat Shah -
2011 Poster: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2011 Oral: Iterative Learning for Reliable Crowdsourcing Systems »
David R Karger · Sewoong Oh · Devavrat Shah -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: Local Rules for Global MAP: When Do They Work ? »
Kyomin Jung · Pushmeet Kohli · Devavrat Shah -
2008 Poster: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2008 Oral: Inferring rankings under constrained sensing »
Srikanth Jagabathula · Devavrat Shah -
2007 Spotlight: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Message Passing for Max-weight Independent Set »
Sujay Sanghavi · Devavrat Shah · Alan S Willsky -
2007 Poster: Local Algorithms for Approximate Inference in Minor-Excluded Graphs »
Kyomin Jung · Devavrat Shah