Timezone: »
Comparing metric measure spaces (i.e. a metric space endowed with a probability distribution) is at the heart of many machine learning problems. The most popular distance between such metric measure spaces is the Gromov-Wasserstein (GW) distance, which is the solution of a quadratic assignment problem. The GW distance is however limited to the comparison of metric measure spaces endowed with a \emph{probability} distribution. To alleviate this issue, we introduce two Unbalanced Gromov-Wasserstein formulations: a distance and a more tractable upper-bounding relaxation. They both allow the comparison of metric spaces equipped with arbitrary positive measures up to isometries. The first formulation is a positive and definite divergence based on a relaxation of the mass conservation constraint using a novel type of quadratically-homogeneous divergence. This divergence works hand in hand with the entropic regularization approach which is popular to solve large scale optimal transport problems. We show that the underlying non-convex optimization problem can be efficiently tackled using a highly parallelizable and GPU-friendly iterative scheme. The second formulation is a distance between mm-spaces up to isometries based on a conic lifting. Lastly, we provide numerical experiments on synthetic and domain adaptation data with a Positive-Unlabeled learning task to highlight the salient features of the unbalanced divergence and its potential applications in ML.
Author Information
Thibault Sejourne (CNRS, Projet Noria, ENS, PSL)
After graduating from Ecole Polytechnique, I enrolled into the master’s degree MVA (“Mathematiques, Visison, Apprentissage”) of Ecole Normale Superieure Paris-Saclay. I am now a second year PhD candidate at ENS Paris under the supervision of Gabriel Peyré and François-Xavier Vialard. I am currently working on the applications of the theory of Optimal Transport for Machine learning applications.
Francois-Xavier Vialard (University Gustave Eiffel)
Gabriel Peyré (Université Paris Dauphine)
More from the Same Authors
-
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Faster Unbalanced Optimal Transport: Translation invariant Sinkhorn and 1-D Frank-Wolfe »
Thibault Sejourne · Francois-Xavier Vialard · Gabriel Peyré -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Poster: Parameter tuning and model selection in Optimal Transport with semi-dual Brenier formulation »
Adrien Vacher · Francois-Xavier Vialard -
2022 Poster: On global convergence of ResNets: From finite to infinite width using linear parameterization »
Raphaël Barboni · Gabriel Peyré · Francois-Xavier Vialard -
2021 Poster: Smooth Bilevel Programming for Sparse Regularization »
Clarice Poon · Gabriel Peyré -
2019 : Poster Session »
Lili Yu · Aleksei Kroshnin · Alex Delalande · Andrew Carr · Anthony Tompkins · Aram-Alexandre Pooladian · Arnaud Robert · Ashok Vardhan Makkuva · Aude Genevay · Bangjie Liu · Bo Zeng · Charlie Frogner · Elsa Cazelles · Esteban G Tabak · Fabio Ramos · François-Pierre PATY · Georgios Balikas · Giulio Trigila · Hao Wang · Hinrich Mahler · Jared Nielsen · Karim Lounici · Kyle Swanson · Mukul Bhutani · Pierre Bréchet · Piotr Indyk · samuel cohen · Stefanie Jegelka · Tao Wu · Thibault Sejourne · Tudor Manole · Wenjun Zhao · Wenlin Wang · Wenqi Wang · Yonatan Dukler · Zihao Wang · Chaosheng Dong -
2019 Poster: Region-specific Diffeomorphic Metric Mapping »
Zhengyang Shen · Francois-Xavier Vialard · Marc Niethammer -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2016 Poster: A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization »
Jingwei Liang · Jalal Fadili · Gabriel Peyré -
2016 Poster: Sparse Support Recovery with Non-smooth Loss Functions »
Kévin Degraux · Gabriel Peyré · Jalal Fadili · Laurent Jacques -
2016 Poster: Stochastic Optimization for Large-scale Optimal Transport »
Aude Genevay · Marco Cuturi · Gabriel Peyré · Francis Bach -
2015 Poster: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2015 Spotlight: Biologically Inspired Dynamic Textures for Probing Motion Perception »
Jonathan Vacher · Andrew Isaac Meso · Laurent U Perrinet · Gabriel Peyré -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2014 Poster: Local Linear Convergence of Forward--Backward under Partial Smoothness »
Jingwei Liang · Jalal Fadili · Gabriel Peyré