Timezone: »
In this paper, we present token labeling---a new training objective for training high-performance vision transformers (ViTs). Different from the standard training objective of ViTs that computes the classification loss on an additional trainable class token, our proposed one takes advantage of all the image patch tokens to compute the training loss in a dense manner. Specifically, token labeling reformulates the image classification problem into multiple token-level recognition problems and assigns each patch token with an individual location-specific supervision generated by a machine annotator. Experiments show that token labeling can clearly and consistently improve the performance of various ViT models across a wide spectrum. For a vision transformer with 26M learnable parameters serving as an example, with token labeling, the model can achieve 84.4% Top-1 accuracy on ImageNet. The result can be further increased to 86.4% by slightly scaling the model size up to 150M, delivering the minimal-sized model among previous models (250M+) reaching 86%. We also show that token labeling can clearly improve the generalization capability of the pretrained models on downstream tasks with dense prediction, such as semantic segmentation. Our code and model are publiclyavailable at https://github.com/zihangJiang/TokenLabeling.
Author Information
Zi-Hang Jiang (National University of Singapore)
Qibin Hou (Nankai University)
Li Yuan (National University of Singapore)
Daquan Zhou (National University of Singapore)
Yujun Shi (Pensees Pte. Ltd.)
Xiaojie Jin (National University of Singapore & Snap Research)
Anran Wang (Nanyang Technological University)
Jiashi Feng (UC Berkeley)
More from the Same Authors
-
2021 : How Well Does Self-Supervised Pre-Training Perform with Streaming ImageNet? »
Dapeng Hu · · Qizhengqiu Lu · Lanqing Hong · Hailin Hu · Yifan Zhang · Zhenguo Li · Jiashi Feng -
2021 : Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2022 Poster: SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation »
Meng-Hao Guo · Cheng-Ze Lu · Qibin Hou · Zhengning Liu · Ming-Ming Cheng · Shi-min Hu -
2022 Spotlight: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Spotlight: Lightning Talks 6A-1 »
Ziyi Wang · Nian Liu · Yaming Yang · Qilong Wang · Yuanxin Liu · Zongxin Yang · Yizhao Gao · Yanchen Deng · Dongze Lian · Nanyi Fei · Ziyu Guan · Xiao Wang · Shufeng Kong · Xumin Yu · Daquan Zhou · Yi Yang · Fandong Meng · Mingze Gao · Caihua Liu · Yongming Rao · Zheng Lin · Haoyu Lu · Zhe Wang · Jiashi Feng · Zhaolin Zhang · Deyu Bo · Xinchao Wang · Chuan Shi · Jiangnan Li · Jiangtao Xie · Jie Zhou · Zhiwu Lu · Wei Zhao · Bo An · Jiwen Lu · Peihua Li · Jian Pei · Hao Jiang · Cai Xu · Peng Fu · Qinghua Hu · Yijie Li · Weigang Lu · Yanan Cao · Jianbin Huang · Weiping Wang · Zhao Cao · Jie Zhou -
2022 Spotlight: SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation »
Meng-Hao Guo · Cheng-Ze Lu · Qibin Hou · Zhengning Liu · Ming-Ming Cheng · Shi-min Hu -
2022 Poster: Deep Model Reassembly »
Xingyi Yang · Daquan Zhou · Songhua Liu · Jingwen Ye · Xinchao Wang -
2022 Poster: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning »
Dongze Lian · Daquan Zhou · Jiashi Feng · Xinchao Wang -
2022 Poster: Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition »
Yifan Zhang · Bryan Hooi · Lanqing Hong · Jiashi Feng -
2022 Poster: Sharpness-Aware Training for Free »
JIAWEI DU · Daquan Zhou · Jiashi Feng · Vincent Tan · Joey Tianyi Zhou -
2021 : Contributed Talk 3: Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2021 Poster: Conflict-Averse Gradient Descent for Multi-task learning »
Bo Liu · Xingchao Liu · Xiaojie Jin · Peter Stone · Qiang Liu -
2021 Poster: No Fear of Heterogeneity: Classifier Calibration for Federated Learning with Non-IID Data »
Mi Luo · Fei Chen · Dapeng Hu · Yifan Zhang · Jian Liang · Jiashi Feng -
2021 Poster: Towards Understanding Why Lookahead Generalizes Better Than SGD and Beyond »
Pan Zhou · Hanshu Yan · Xiaotong Yuan · Jiashi Feng · Shuicheng Yan -
2021 Poster: Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning »
Yifan Zhang · Bryan Hooi · Dapeng Hu · Jian Liang · Jiashi Feng -
2021 Poster: Direct Multi-view Multi-person 3D Pose Estimation »
tao wang · Jianfeng Zhang · Yujun Cai · Shuicheng Yan · Jiashi Feng -
2020 Poster: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2020 Spotlight: ConvBERT: Improving BERT with Span-based Dynamic Convolution »
Zi-Hang Jiang · Weihao Yu · Daquan Zhou · Yunpeng Chen · Jiashi Feng · Shuicheng Yan -
2018 Poster: Self-Erasing Network for Integral Object Attention »
Qibin Hou · PengTao Jiang · Yunchao Wei · Ming-Ming Cheng -
2017 Poster: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Spotlight: Dual Path Networks »
Yunpeng Chen · Jianan Li · Huaxin Xiao · Xiaojie Jin · Shuicheng Yan · Jiashi Feng -
2017 Poster: Predicting Scene Parsing and Motion Dynamics in the Future »
Xiaojie Jin · Huaxin Xiao · Xiaohui Shen · Jimei Yang · Zhe Lin · Yunpeng Chen · Zequn Jie · Jiashi Feng · Shuicheng Yan -
2016 Poster: Tree-Structured Reinforcement Learning for Sequential Object Localization »
Zequn Jie · Xiaodan Liang · Jiashi Feng · Xiaojie Jin · Wen Lu · Shuicheng Yan -
2014 Poster: Robust Logistic Regression and Classification »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan -
2013 Poster: Online Robust PCA via Stochastic Optimization »
Jiashi Feng · Huan Xu · Shuicheng Yan -
2013 Poster: Online PCA for Contaminated Data »
Jiashi Feng · Huan Xu · Shie Mannor · Shuicheng Yan