Timezone: »
The importance of aggregated count data, which is calculated from the data of multiple individuals, continues to increase. Collective Graphical Model (CGM) is a probabilistic approach to the analysis of aggregated data. One of the most important operations in CGM is maximum a posteriori (MAP) inference of unobserved variables under given observations. Because the MAP inference problem for general CGMs has been shown to be NP-hard, an approach that solves an approximate problem has been proposed. However, this approach has two major drawbacks. First, the quality of the solution deteriorates when the values in the count tables are small, because the approximation becomes inaccurate. Second, since continuous relaxation is applied, the integrality constraints of the output are violated. To resolve these problems, this paper proposes a new method for MAP inference for CGMs on path graphs. Our method is based on the Difference of Convex Algorithm (DCA), which is a general methodology to minimize a function represented as the sum of a convex function and a concave function. In our algorithm, important subroutines in DCA can be efficiently calculated by minimum convex cost flow algorithms. Experiments show that the proposed method outputs higher quality solutions than the conventional approach.
Author Information
Yasunori Akagi (NTT Human Informatics Laboratories, NTT Corporation)
Naoki Marumo (NTT)
Hideaki Kim (NTT Corporation)
Takeshi Kurashima (NTT Corporation)
Hiroyuki Toda (NTT Human Informatics Laboratories, NTT Corporation, Japan)
More from the Same Authors
-
2021 Spotlight: Fast Bayesian Inference for Gaussian Cox Processes via Path Integral Formulation »
Hideaki Kim -
2022 Poster: Fast Bayesian Estimation of Point Process Intensity as Function of Covariates »
Hideaki Kim · Taichi Asami · Hiroyuki Toda -
2021 Poster: Fast Bayesian Inference for Gaussian Cox Processes via Path Integral Formulation »
Hideaki Kim -
2019 Poster: Spatially Aggregated Gaussian Processes with Multivariate Areal Outputs »
Yusuke Tanaka · Toshiyuki Tanaka · Tomoharu Iwata · Takeshi Kurashima · Maya Okawa · Yasunori Akagi · Hiroyuki Toda