Timezone: »
Recent advances in self-supervised learning with instance-level contrastive objectives facilitate unsupervised clustering. However, a standalone datum is not perceiving the context of the holistic cluster, and may undergo sub-optimal assignment. In this paper, we extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation that encodes the context of each data group. Contrastive learning with this representation then rewards the assignment of each datum. To implement this vision, we propose twin-contrast clustering (TCC). We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one. On one hand, with the corresponding assignment variables being the weight, a weighted aggregation along the data points implements the set representation of a cluster. We further propose heuristic cluster augmentation equivalents to enable cluster-level contrastive learning. On the other hand, we derive the evidence lower-bound of the instance-level contrastive objective with the assignments. By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps. Extensive experiments show that TCC outperforms the state-of-the-art on benchmarked datasets.
Author Information
Yuming Shen (University of Oxford)
Ziyi Shen (Beijing Institute of Technology)
Menghan Wang (eBay)
Jie Qin (Inception Institute of Artificial Intelligence)
Philip Torr (University of Oxford)
Ling Shao (Inception Institute of Artificial Intelligence)
More from the Same Authors
-
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2021 : Are Vision Transformers Always More Robust Than Convolutional Neural Networks? »
Francesco Pinto · Philip Torr · Puneet Dokania -
2021 : Mix-MaxEnt: Improving Accuracy and Uncertainty Estimates of Deterministic Neural Networks »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2023 Poster: ReMaX: Relaxing for Better Training on Efficient Panoptic Segmentation »
Shuyang Sun · Weijun Wang · Andrew Howard · Qihang Yu · Philip Torr · Liang-Chieh Chen -
2023 Poster: Bridging Semantic Gaps for Language-Supervised Semantic Segmentation »
Yun Xing · Jian Kang · Aoran Xiao · Jiahao Nie · Ling Shao · Shijian Lu -
2023 Poster: Language Model Tokenizers Introduce Unfairness Between Languages »
Aleksandar Petrov · Emanuele La Malfa · Philip Torr · Adel Bibi -
2023 Poster: Revisiting Evaluation Metrics for Semantic Segmentation: Optimization and Evaluation of Fine-grained Intersection over Union »
Zifu Wang · Maxim Berman · Amal Rannen-Triki · Philip Torr · Devis Tuia · Tinne Tuytelaars · Luc V Gool · Jiaqian Yu · Matthew Blaschko -
2023 Poster: Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models »
Shuo Chen · Jindong Gu · Zhen Han · Yunpu Ma · Philip Torr · Volker Tresp -
2022 Poster: PolarMix: A General Data Augmentation Technique for LiDAR Point Clouds »
Aoran Xiao · Jiaxing Huang · Dayan Guan · Kaiwen Cui · Shijian Lu · Ling Shao -
2022 Poster: Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Structure-Preserving 3D Garment Modeling with Neural Sewing Machines »
Xipeng Chen · Guangrun Wang · Dizhong Zhu · Xiaodan Liang · Philip Torr · Liang Lin -
2022 Poster: Learn what matters: cross-domain imitation learning with task-relevant embeddings »
Tim Franzmeyer · Philip Torr · João Henriques -
2022 Poster: Make Some Noise: Reliable and Efficient Single-Step Adversarial Training »
Pau de Jorge Aranda · Adel Bibi · Riccardo Volpi · Amartya Sanyal · Philip Torr · Gregory Rogez · Puneet Dokania -
2022 Poster: FedSR: A Simple and Effective Domain Generalization Method for Federated Learning »
A. Tuan Nguyen · Philip Torr · Ser Nam Lim -
2021 : Shape-Tailored Deep Neural Networks With PDEs »
Naeemullah Khan · Angira Sharma · Philip Torr · Ganesh Sundaramoorthi -
2021 Poster: Looking Beyond Single Images for Contrastive Semantic Segmentation Learning »
FEIHU ZHANG · Philip Torr · Rene Ranftl · Stephan Richter -
2021 Poster: FACMAC: Factored Multi-Agent Centralised Policy Gradients »
Bei Peng · Tabish Rashid · Christian Schroeder de Witt · Pierre-Alexandre Kamienny · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2021 Poster: TransMatcher: Deep Image Matching Through Transformers for Generalizable Person Re-identification »
Shengcai Liao · Ling Shao -
2021 Poster: Do Different Tracking Tasks Require Different Appearance Models? »
Zhongdao Wang · Hengshuang Zhao · Ya-Li Li · Shengjin Wang · Philip Torr · Luca Bertinetto -
2021 Poster: Variational Multi-Task Learning with Gumbel-Softmax Priors »
Jiayi Shen · Xiantong Zhen · Marcel Worring · Ling Shao -
2021 Poster: HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning »
Shiming Chen · Guosen Xie · Yang Liu · Qinmu Peng · Baigui Sun · Hao Li · Xinge You · Ling Shao -
2021 Poster: A Continuous Mapping For Augmentation Design »
Keyu Tian · Chen Lin · Ser Nam Lim · Wanli Ouyang · Puneet Dokania · Philip Torr -
2021 Poster: Overcoming the Convex Barrier for Simplex Inputs »
Harkirat Singh Behl · M. Pawan Kumar · Philip Torr · Krishnamurthy Dvijotham -
2020 Poster: STEER : Simple Temporal Regularization For Neural ODE »
Arnab Ghosh · Harkirat Singh Behl · Emilien Dupont · Philip Torr · Vinay Namboodiri -
2020 Poster: Calibrating Deep Neural Networks using Focal Loss »
Jishnu Mukhoti · Viveka Kulharia · Amartya Sanyal · Stuart Golodetz · Philip Torr · Puneet Dokania -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz -
2020 Poster: Learning to Learn Variational Semantic Memory »
Xiantong Zhen · Yingjun Du · Huan Xiong · Qiang Qiu · Cees Snoek · Ling Shao -
2020 Poster: Continual Learning in Low-rank Orthogonal Subspaces »
Arslan Chaudhry · Naeemullah Khan · Puneet Dokania · Philip Torr -
2020 Poster: Human Parsing Based Texture Transfer from Single Image to 3D Human via Cross-View Consistency »
Fang Zhao · Shengcai Liao · Kaihao Zhang · Ling Shao -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias -
2019 Poster: Two Generator Game: Learning to Sample via Linear Goodness-of-Fit Test »
Lizhong Ding · Mengyang Yu · Li Liu · Fan Zhu · Yong Liu · Yu Li · Ling Shao -
2019 Poster: Multi-Agent Common Knowledge Reinforcement Learning »
Christian Schroeder de Witt · Jakob Foerster · Gregory Farquhar · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2019 Poster: Controllable Text-to-Image Generation »
Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr -
2018 Poster: A Unified View of Piecewise Linear Neural Network Verification »
Rudy Bunel · Ilker Turkaslan · Philip Torr · Pushmeet Kohli · Pawan K Mudigonda -
2018 Poster: Modeling Dynamic Missingness of Implicit Feedback for Recommendation »
Menghan Wang · Mingming Gong · Xiaolin Zheng · Kun Zhang -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2013 Poster: Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation »
Vibhav Vineet · Carsten Rother · Philip Torr -
2011 Poster: Learning Anchor Planes for Classification »
Ziming Zhang · Lubor Ladicky · Philip Torr · Amir Saffari -
2011 Demonstration: Online structured-output learning for real-time object tracking and detection »
Sam Hare · Amir Saffari · Philip Torr -
2008 Poster: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2008 Spotlight: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2007 Oral: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr -
2007 Poster: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr