Timezone: »
Active learning sequentially selects the best instance for labeling by optimizing an acquisition function to enhance data/label efficiency. The selection can be either from a discrete instance set (pool-based scenario) or a continuous instance space (query synthesis scenario). In this work, we study both active learning scenarios for Gaussian Process Classification (GPC). The existing active learning strategies that maximize the Estimated Error Reduction (EER) aim at reducing the classification error after training with the new acquired instance in a one-step-look-ahead manner. The computation of EER-based acquisition functions is typically prohibitive as it requires retraining the GPC with every new query. Moreover, as the EER is not smooth, it can not be combined with gradient-based optimization techniques to efficiently explore the continuous instance space for query synthesis. To overcome these critical limitations, we develop computationally efficient algorithms for EER-based active learning with GPC. We derive the joint predictive distribution of label pairs as a one-dimensional integral, as a result of which the computation of the acquisition function avoids retraining the GPC for each query, remarkably reducing the computational overhead. We also derive the gradient chain rule to efficiently calculate the gradient of the acquisition function, which leads to the first query synthesis active learning algorithm implementing EER-based strategies. Our experiments clearly demonstrate the computational efficiency of the proposed algorithms. We also benchmark our algorithms on both synthetic and real-world datasets, which show superior performance in terms of sampling efficiency compared to the existing state-of-the-art algorithms.
Author Information
Guang Zhao (Texas A&M)
Edward Dougherty
Byung-Jun Yoon (Brookhaven National Laboratory)
Francis Alexander
Xiaoning Qian (Texas A&M)
More from the Same Authors
-
2023 Poster: QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules »
Haiyang Yu · Meng Liu · Youzhi Luo · Alex Strasser · Xiaofeng Qian · Xiaoning Qian · Shuiwang Ji -
2020 Poster: BayReL: Bayesian Relational Learning for Multi-omics Data Integration »
Ehsan Hajiramezanali · Arman Hasanzadeh · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2019 Poster: Variational Graph Recurrent Neural Networks »
Ehsan Hajiramezanali · Arman Hasanzadeh · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2019 Poster: Semi-Implicit Graph Variational Auto-Encoders »
Arman Hasanzadeh · Ehsan Hajiramezanali · Krishna Narayanan · Nick Duffield · Mingyuan Zhou · Xiaoning Qian -
2018 Poster: Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data »
Ehsan Hajiramezanali · Siamak Zamani Dadaneh · Alireza Karbalayghareh · Mingyuan Zhou · Xiaoning Qian