Timezone: »
Poster
Conformal Bayesian Computation
Edwin Fong · Chris C Holmes
We develop scalable methods for producing conformal Bayesian predictive intervals with finite sample calibration guarantees. Bayesian posterior predictive distributions, $p(y \mid x)$, characterize subjective beliefs on outcomes of interest, $y$, conditional on predictors, $x$. Bayesian prediction is well-calibrated when the model is true, but the predictive intervals may exhibit poor empirical coverage when the model is misspecified, under the so called ${\cal{M}}$-open perspective. In contrast, conformal inference provides finite sample frequentist guarantees on predictive confidence intervals without the requirement of model fidelity. Using 'add-one-in' importance sampling, we show that conformal Bayesian predictive intervals are efficiently obtained from re-weighted posterior samples of model parameters. Our approach contrasts with existing conformal methods that require expensive refitting of models or data-splitting to achieve computational efficiency. We demonstrate the utility on a range of examples including extensions to partially exchangeable settings such as hierarchical models.
Author Information
Edwin Fong (University of Oxford)
Chris C Holmes (University of Oxford)
More from the Same Authors
-
2021 : Relaxed-Responsibility Hierarchical Discrete VAEs »
Matthew Willetts · Xenia Miscouridou · Stephen J Roberts · Chris C Holmes -
2022 Poster: A Multi-Resolution Framework for U-Nets with Applications to Hierarchical VAEs »
Fabian Falck · Christopher Williams · Dominic Danks · George Deligiannidis · Christopher Yau · Chris C Holmes · Arnaud Doucet · Matthew Willetts -
2021 : Invite Talk 1 Q&A »
Chris C Holmes -
2021 : How to train your model when it's wrong: Bayesian nonparametric learning in M-open »
Chris C Holmes -
2021 Poster: Multi-Facet Clustering Variational Autoencoders »
Fabian Falck · Haoting Zhang · Matthew Willetts · George Nicholson · Christopher Yau · Chris C Holmes -
2021 Poster: On Locality of Local Explanation Models »
Sahra Ghalebikesabi · Lucile Ter-Minassian · Karla DiazOrdaz · Chris C Holmes -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2020 : Chris Holmes Q&A »
Chris C Holmes -
2020 : Bayesian nowcasting of COVID-19 regional test results in England »
Chris C Holmes -
2020 Poster: Explicit Regularisation in Gaussian Noise Injections »
Alexander Camuto · Matthew Willetts · Umut Simsekli · Stephen J Roberts · Chris C Holmes -
2018 Poster: Nonparametric learning from Bayesian models with randomized objective functions »
Simon Lyddon · Stephen Walker · Chris C Holmes