Timezone: »
Recently, self-supervised learning for graph neural networks (GNNs) has attracted considerable attention because of their notable successes in learning the representation of graph-structure data. However, the formation of a real-world graph typically arises from the highly complex interaction of many latent factors. The existing self-supervised learning methods for GNNs are inherently holistic and neglect the entanglement of the latent factors, resulting in the learned representations suboptimal for downstream tasks and difficult to be interpreted. Learning disentangled graph representations with self-supervised learning poses great challenges and remains largely ignored by the existing literature. In this paper, we introduce the Disentangled Graph Contrastive Learning (DGCL) method, which is able to learn disentangled graph-level representations with self-supervision. In particular, we first identify the latent factors of the input graph and derive its factorized representations. Each of the factorized representations describes a latent and disentangled aspect pertinent to a specific latent factor of the graph. Then we propose a novel factor-wise discrimination objective in a contrastive learning manner, which can force the factorized representations to independently reflect the expressive information from different latent factors. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of our method against several state-of-the-art baselines.
Author Information
Haoyang Li (Tsinghua University)
Xin Wang (Tsinghua University)
Ziwei Zhang (Tsinghua University)
Zehuan Yuan (Nanjing University)
Hang Li (Huawei Tech. Investment)
Wenwu Zhu (Tsinghua University)
More from the Same Authors
-
2022 Poster: Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video Grounding »
Yang Jin · yongzhi li · Zehuan Yuan · Yadong Mu -
2022 Poster: Module-Aware Optimization for Auxiliary Learning »
Hong Chen · Xin Wang · Yue Liu · Yuwei Zhou · Chaoyu Guan · Wenwu Zhu -
2022 Poster: QueryPose: Sparse Multi-Person Pose Regression via Spatial-Aware Part-Level Query »
Yabo Xiao · Kai Su · Xiaojuan Wang · Dongdong Yu · Lei Jin · Mingshu He · Zehuan Yuan -
2022 Poster: Learning Invariant Graph Representations for Out-of-Distribution Generalization »
Haoyang Li · Ziwei Zhang · Xin Wang · Wenwu Zhu -
2022 Poster: Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift »
Zeyang Zhang · Xin Wang · Ziwei Zhang · Haoyang Li · Zhou Qin · Wenwu Zhu -
2022 Poster: NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search »
Yijian Qin · Ziwei Zhang · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2022 Spotlight: Lightning Talks 3A-4 »
Jinzhi Zhang · Hao Jiang · Hongrui Cai · Qi Yi · Yang Jin · Zhi Tian · Rui Zhang · Wanquan Feng · Xiangxiang Chu · Ruofan Tang · yongzhi li · Yadong Mu · Zehuan Yuan · shaohui peng · Zheng Cao · Xiaoming Wang · Xuetao Feng · Xiaolin Wei · Jiaming Guo · Yadong Mu · Yan Wang · Jing Xiao · Xing Hu · Chunhua Shen · Ruqi Huang · Juyong Zhang · Zidong Du · LU FANG · xishan zhang · Qi Guo · Yunji Chen -
2022 Spotlight: Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video Grounding »
Yang Jin · yongzhi li · Zehuan Yuan · Yadong Mu -
2022 Spotlight: NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search »
Yijian Qin · Ziwei Zhang · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2022 Poster: Rethinking Resolution in the Context of Efficient Video Recognition »
Chuofan Ma · Qiushan Guo · Yi Jiang · Ping Luo · Zehuan Yuan · Xiaojuan Qi -
2022 Poster: On the Convergence of Stochastic Multi-Objective Gradient Manipulation and Beyond »
Shiji Zhou · Wenpeng Zhang · Jiyan Jiang · Wenliang Zhong · Jinjie GU · Wenwu Zhu -
2021 Poster: Asynchronous Decentralized Online Learning »
Jiyan Jiang · Wenpeng Zhang · Jinjie GU · Wenwu Zhu -
2021 Poster: Curriculum Disentangled Recommendation with Noisy Multi-feedback »
Hong Chen · Yudong Chen · Xin Wang · Ruobing Xie · Rui Wang · Feng Xia · Wenwu Zhu -
2021 Poster: Graph Differentiable Architecture Search with Structure Learning »
Yijian Qin · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2020 Poster: Implicit Graph Neural Networks »
Fangda Gu · Heng Chang · Wenwu Zhu · Somayeh Sojoudi · Laurent El Ghaoui -
2019 Poster: Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos »
Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu -
2019 Poster: Learning Disentangled Representations for Recommendation »
Jianxin Ma · Chang Zhou · Peng Cui · Hongxia Yang · Wenwu Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang -
2014 Poster: Convolutional Neural Network Architectures for Matching Natural Language Sentences »
Baotian Hu · Zhengdong Lu · Hang Li · Qingcai Chen -
2013 Poster: A Deep Architecture for Matching Short Texts »
Zhengdong Lu · Hang Li