Timezone: »
Poster
CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression
Zhize Li · Peter Richtarik
Due to the high communication cost in distributed and federated learning, methods relying on compressed communication are becoming increasingly popular. Besides, the best theoretically and practically performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of communications (faster convergence), e.g., Nesterov's accelerated gradient descent [31, 32] and Adam [14]. In order to combine the benefits of communication compression and convergence acceleration, we propose a \emph{compressed and accelerated} gradient method based on ANITA [20] for distributed optimization, which we call CANITA. Our CANITA achieves the \emph{first accelerated rate} $O\bigg(\sqrt{\Big(1+\sqrt{\frac{\omega^3}{n}}\Big)\frac{L}{\epsilon}} + \omega\big(\frac{1}{\epsilon}\big)^{\frac{1}{3}}\bigg)$, which improves upon the state-of-the-art non-accelerated rate $O\left((1+\frac{\omega}{n})\frac{L}{\epsilon} + \frac{\omega^2+\omega}{\omega+n}\frac{1}{\epsilon}\right)$ of DIANA [12] for distributed general convex problems, where $\epsilon$ is the target error, $L$ is the smooth parameter of the objective, $n$ is the number of machines/devices, and $\omega$ is the compression parameter (larger $\omega$ means more compression can be applied, and no compression implies $\omega=0$). Our results show that as long as the number of devices $n$ is large (often true in distributed/federated learning), or the compression $\omega$ is not very high, CANITA achieves the faster convergence rate $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$, i.e., the number of communication rounds is $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$ (vs. $O\big(\frac{L}{\epsilon}\big)$ achieved by previous works). As a result, CANITA enjoys the advantages of both compression (compressed communication in each round) and acceleration (much fewer communication rounds).
Author Information
Zhize Li (King Abdullah University of Science and Technology (KAUST))
Peter Richtarik (KAUST)
More from the Same Authors
-
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method »
Zhize Li -
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2022 Poster: BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression »
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi -
2022 Poster: Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering »
Lingxiao Huang · Zhize Li · Jialin Sun · Haoyu Zhao -
2022 Poster: SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression »
Zhize Li · Haoyu Zhao · Boyue Li · Yuejie Chi -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization »
Mher Safaryan · Filip Hanzely · Peter Richtarik -
2021 Poster: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2021 Poster: Error Compensated Distributed SGD Can Be Accelerated »
Xun Qian · Peter Richtarik · Tong Zhang -
2021 Poster: Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks »
Dmitry Kovalev · Elnur Gasanov · Alexander Gasnikov · Peter Richtarik -
2021 Oral: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2020 : Contributed Video: PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization, Zhize Li »
Zhize Li -
2019 Poster: A unified variance-reduced accelerated gradient method for convex optimization »
Guanghui Lan · Zhize Li · Yi Zhou -
2019 Poster: SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points »
Zhize Li -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang