Timezone: »
Neurons in the dorsal visual pathway of the mammalian brain are selective for motion stimuli, with the complexity of stimulus representations increasing along the hierarchy. This progression is similar to that of the ventral visual pathway, which is well characterized by artificial neural networks (ANNs) optimized for object recognition. In contrast, there are no image-computable models of the dorsal stream with comparable explanatory power. We hypothesized that the properties of dorsal stream neurons could be explained by a simple learning objective: the need for an organism to orient itself during self-motion. To test this hypothesis, we trained a 3D ResNet to predict an agent's self-motion parameters from visual stimuli in a simulated environment. We found that the responses in this network accounted well for the selectivity of neurons in a large database of single-neuron recordings from the dorsal visual stream of non-human primates. In contrast, ANNs trained on an action recognition dataset through supervised or self-supervised learning could not explain responses in the dorsal stream, despite also being trained on naturalistic videos with moving objects. These results demonstrate that an ecologically relevant cost function can account for dorsal stream properties in the primate brain.
Author Information
Patrick Mineault (-)
Shahab Bakhtiari (McGill University)
Blake Richards (Mila)
Christopher Pack (McGill University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Your head is there to move you around: Goal-driven models of the primate dorsal pathway »
Dates n/a. Room
More from the Same Authors
-
2021 Spotlight: The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning »
Shahab Bakhtiari · Patrick Mineault · Timothy Lillicrap · Christopher Pack · Blake Richards -
2022 : What's the endgame of neuroAI? »
Patrick Mineault -
2022 Poster: $\alpha$-ReQ : Assessing Representation Quality in Self-Supervised Learning by measuring eigenspectrum decay »
Kumar K Agrawal · Arnab Kumar Mondal · Arna Ghosh · Blake Richards -
2022 Poster: Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules »
Yuhan Helena Liu · Arna Ghosh · Blake Richards · Eric Shea-Brown · Guillaume Lajoie -
2021 Poster: Adversarial Feature Desensitization »
Pouya Bashivan · Reza Bayat · Adam Ibrahim · Kartik Ahuja · Mojtaba Faramarzi · Touraj Laleh · Blake Richards · Irina Rish -
2021 Poster: The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning »
Shahab Bakhtiari · Patrick Mineault · Timothy Lillicrap · Christopher Pack · Blake Richards -
2020 : Closing remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Rui Ponte Costa · Doina Precup · Blake Richards · Ida Momennejad -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 : Organizers Opening Remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Ida Momennejad · Rui Ponte Costa · Blake Richards · Doina Precup