Timezone: »
Poster
ROI Maximization in Stochastic Online Decision-Making
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet
We introduce a novel theoretical framework for Return On Investment (ROI) maximization in repeated decision-making. Our setting is motivated by the use case of companies that regularly receive proposals for technological innovations and want to quickly decide whether they are worth implementing. We design an algorithm for learning ROI-maximizing decision-making policies over a sequence of innovation proposals. Our algorithm provably converges to an optimal policy in class $\Pi$ at a rate of order $\min\big\{1/(N\Delta^2),N^{-1/3}\}$, where $N$ is the number of innovations and $\Delta$ is the suboptimality gap in $\Pi$. A significant hurdle of our formulation, which sets it aside from other online learning problems such as bandits, is that running a policy does not provide an unbiased estimate of its performance.
Author Information
Nicolò Cesa-Bianchi (Università degli Studi di Milano, Italy)
Tom Cesari (ANITI & TSE)
Yishay Mansour (Tel Aviv University & Google)
Vianney Perchet (ENSAE & Criteo AI Lab)
More from the Same Authors
-
2021 Spotlight: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Spotlight: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Spotlight: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Finding Safe Zones of Markov Decision Processes Policies »
Michal Moshkovitz · Lee Cohen · Yishay Mansour -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: Active Learning of Classifiers with Label and Seed Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Silvio Lattanzi · Andrea Paudice · Maximilian Thiessen -
2022 Poster: Benign Underfitting of Stochastic Gradient Descent »
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman -
2022 Poster: A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs »
Chloé Rouyer · Dirk van der Hoeven · Nicolò Cesa-Bianchi · Yevgeny Seldin -
2022 Poster: A Characterization of Semi-Supervised Adversarially Robust PAC Learnability »
Idan Attias · Steve Hanneke · Yishay Mansour -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Learning on the Edge: Online Learning with Stochastic Feedback Graphs »
Emmanuel Esposito · Federico Fusco · Dirk van der Hoeven · Nicolò Cesa-Bianchi -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2022 Poster: A Regret-Variance Trade-Off in Online Learning »
Dirk van der Hoeven · Nikita Zhivotovskiy · Nicolò Cesa-Bianchi -
2021 Poster: Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 Oral: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Local Differential Privacy for Regret Minimization in Reinforcement Learning »
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta -
2021 Poster: Beyond Bandit Feedback in Online Multiclass Classification »
Dirk van der Hoeven · Federico Fusco · Nicolò Cesa-Bianchi -
2021 Poster: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure »
Aviv Rosenberg · Yishay Mansour -
2021 Poster: Differentially Private Multi-Armed Bandits in the Shuffle Model »
Jay Tenenbaum · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2021 Poster: Making the most of your day: online learning for optimal allocation of time »
Etienne Boursier · Tristan Garrec · Vianney Perchet · Marco Scarsini -
2021 Poster: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Poster: Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates »
Francois Bachoc · Tom Cesari · Sébastien Gerchinovitz -
2021 Poster: Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Dueling Bandits with Team Comparisons »
Lee Cohen · Ulrike Schmidt-Kraepelin · Yishay Mansour -
2021 Poster: Online Sign Identification: Minimization of the Number of Errors in Thresholding Bandits »
Reda Ouhamma · Odalric-Ambrym Maillard · Vianney Perchet -
2021 Poster: Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of Greedy Algorithm »
Nathan Noiry · Vianney Perchet · Flore Sentenac -
2021 Poster: On Margin-Based Cluster Recovery with Oracle Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Silvio Lattanzi · Andrea Paudice -
2021 Poster: Decentralized Learning in Online Queuing Systems »
Flore Sentenac · Etienne Boursier · Vianney Perchet -
2020 Poster: Locally-Adaptive Nonparametric Online Learning »
Ilja Kuzborskij · Nicolò Cesa-Bianchi -
2020 Poster: Exact Recovery of Mangled Clusters with Same-Cluster Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Silvio Lattanzi · Andrea Paudice -
2020 Oral: Exact Recovery of Mangled Clusters with Same-Cluster Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Silvio Lattanzi · Andrea Paudice -
2020 Session: Orals & Spotlights Track 11: Learning Theory »
Dylan Foster · Nicolò Cesa-Bianchi -
2019 Poster: Nonstochastic Multiarmed Bandits with Unrestricted Delays »
Tobias Sommer Thune · Nicolò Cesa-Bianchi · Yevgeny Seldin -
2019 Poster: Correlation Clustering with Adaptive Similarity Queries »
Marco Bressan · Nicolò Cesa-Bianchi · Andrea Paudice · Fabio Vitale -
2017 : Poster session »
Nicolò Cesa-Bianchi -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Nonparametric Online Regression while Learning the Metric »
Ilja Kuzborskij · Nicolò Cesa-Bianchi -
2017 Poster: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Poster: Boltzmann Exploration Done Right »
Nicolò Cesa-Bianchi · Claudio Gentile · Gergely Neu · Gabor Lugosi -
2017 Spotlight: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Poster: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2017 Poster: Multi-Armed Bandits with Metric Movement Costs »
Tomer Koren · Roi Livni · Yishay Mansour -
2017 Spotlight: Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe »
Quentin Berthet · Vianney Perchet -
2016 Poster: Efficient Second Order Online Learning by Sketching »
Haipeng Luo · Alekh Agarwal · Nicolò Cesa-Bianchi · John Langford -
2013 Poster: Online Learning with Switching Costs and Other Adaptive Adversaries »
Nicolò Cesa-Bianchi · Ofer Dekel · Ohad Shamir -
2013 Poster: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Oral: From Bandits to Experts: A Tale of Domination and Independence »
Noga Alon · Nicolò Cesa-Bianchi · Claudio Gentile · Yishay Mansour -
2013 Poster: A Gang of Bandits »
Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2012 Poster: A Linear Time Active Learning Algorithm for Link Classification »
Nicolò Cesa-Bianchi · Claudio Gentile · Fabio Vitale · Giovanni Zappella -
2012 Poster: Mirror Descent Meets Fixed Share (and feels no regret) »
Nicolò Cesa-Bianchi · Pierre Gaillard · Gabor Lugosi · Gilles Stoltz -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Poster: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Oral: Efficient Online Learning via Randomized Rounding »
Nicolò Cesa-Bianchi · Ohad Shamir -
2011 Poster: See the Tree Through the Lines: The Shazoo Algorithm »
Fabio Vitale · Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2011 Spotlight: See the Tree Through the Lines: The Shazoo Algorithm »
Fabio Vitale · Nicolò Cesa-Bianchi · Claudio Gentile · Giovanni Zappella -
2009 Workshop: Learning from Multiple Sources with Applications to Robotics »
Barbara Caputo · Nicolò Cesa-Bianchi · David R Hardoon · Gayle Leen · Francesco Orabona · Jaakko Peltonen · Simon Rogers -
2008 Poster: Linear Classification and Selective Sampling Under Low Noise Conditions »
Giovanni Cavallanti · Nicolò Cesa-Bianchi · Claudio Gentile