Timezone: »
Spotlight
Sequential Algorithms for Testing Closeness of Distributions
Aadil Oufkir · Omar Fawzi · Nicolas Flammarion · Aurélien Garivier
@
What advantage do sequential procedures provide over batch algorithms for testing properties of unknown distributions? Focusing on the problem of testing whether two distributions $\mathcal{D}_1$ and $\mathcal{D}_2$ on $\{1,\dots, n\}$ are equal or $\epsilon$-far, we give several answers to this question. We show that for a small alphabet size $n$, there is a sequential algorithm that outperforms any batch algorithm by a factor of at least $4$ in terms sample complexity. For a general alphabet size $n$, we give a sequential algorithm that uses no more samples than its batch counterpart, and possibly fewer if the actual distance between $\mathcal{D}_1$ and $\mathcal{D}_2$ is larger than $\epsilon$. As a corollary, letting $\epsilon$ go to $0$, we obtain a sequential algorithm for testing closeness (with no a priori bound on the distance between $\mathcal{D}_1$ and $\mathcal{D}_2$) with a sample complexity $\tilde{\mathcal{O}}(\frac{n^{2/3}}{TV(\mathcal{D}_1, \mathcal{D}_2)^{4/3}})$: this improves over the $\tilde{\mathcal{O}}(\frac{n/\log n}{TV(\mathcal{D}_1, \mathcal{D}_2)^{2} })$ tester of [Daskalakis and Kawase 2017] and is optimal up to multiplicative constants. We also establish limitations of sequential algorithms for the problem of testing closeness: they can improve the worst case number of samples by at most a constant factor.
Author Information
Aadil Oufkir (Inria / ENS Lyon)
Omar Fawzi (ENS Lyon)
Nicolas Flammarion (EPFL)
Aurélien Garivier (ENS Lyon)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Sequential Algorithms for Testing Closeness of Distributions »
Fri. Dec 10th 04:30 -- 06:00 PM Room
More from the Same Authors
-
2021 : RobustBench: a standardized adversarial robustness benchmark »
Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein -
2021 Poster: Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity »
Scott Pesme · Loucas Pillaud-Vivien · Nicolas Flammarion -
2021 Poster: Last iterate convergence of SGD for Least-Squares in the Interpolation regime. »
Aditya Vardhan Varre · Loucas Pillaud-Vivien · Nicolas Flammarion -
2021 Oral: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2021 Poster: A/B/n Testing with Control in the Presence of Subpopulations »
Yoan Russac · Christina Katsimerou · Dennis Bohle · Olivier Cappé · Aurélien Garivier · Wouter Koolen -
2021 Poster: Navigating to the Best Policy in Markov Decision Processes »
Aymen Al Marjani · Aurélien Garivier · Alexandre Proutiere -
2021 Poster: Continuized Accelerations of Deterministic and Stochastic Gradient Descents, and of Gossip Algorithms »
Mathieu Even · Raphaël Berthier · Francis Bach · Nicolas Flammarion · Hadrien Hendrikx · Pierre Gaillard · Laurent Massoulié · Adrien Taylor -
2019 Poster: Learning dynamic polynomial proofs »
Alhussein Fawzi · Mateusz Malinowski · Hamza Fawzi · Omar Fawzi -
2019 Spotlight: Learning dynamic polynomial proofs »
Alhussein Fawzi · Mateusz Malinowski · Hamza Fawzi · Omar Fawzi -
2018 Poster: Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling »
Emilie Kaufmann · Wouter Koolen · Aurélien Garivier -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: Adversarial vulnerability for any classifier »
Alhussein Fawzi · Hamza Fawzi · Omar Fawzi