Timezone: »
Discovering ideal Graph Neural Networks (GNNs) architectures for different tasks is labor intensive and time consuming. To save human efforts, Neural Architecture Search (NAS) recently has been used to automatically discover adequate GNN architectures for certain tasks in order to achieve competitive or even better performance compared with manually designed architectures. However, existing works utilizing NAS to search GNN structures fail to answer the question: how NAS is able to select the desired GNN architectures? In this paper, we investigate this question to solve the problem, for the first time. We conduct a measurement study with experiments to discover that gradient based NAS methods tend to select proper architectures based on the usefulness of different types of information with respect to the target task. Our explorations further show that gradient based NAS also suffers from noises hidden in the graph, resulting in searching suboptimal GNN architectures. Based on our findings, we propose a Graph differentiable Architecture Search model with Structure Optimization (GASSO), which allows differentiable search of the architecture with gradient descent and is able to discover graph neural architectures with better performance through employing graph structure learning as a denoising process in the search procedure. The proposed GASSO model is capable of simultaneously searching the optimal architecture and adaptively adjusting graph structure by jointly optimizing graph architecture search and graph structure denoising. Extensive experiments on real-world graph datasets demonstrate that our proposed GASSO model is able to achieve state-of-the-art performance compared with existing baselines.
Author Information
Yijian Qin (Tsinghua University, Tsinghua University)
Xin Wang (Tsinghua University)
Zeyang Zhang (Tsinghua University)
Wenwu Zhu (Tsinghua University)
More from the Same Authors
-
2022 Poster: Module-Aware Optimization for Auxiliary Learning »
Hong Chen · Xin Wang · Yue Liu · Yuwei Zhou · Chaoyu Guan · Wenwu Zhu -
2022 Poster: Learning Invariant Graph Representations for Out-of-Distribution Generalization »
Haoyang Li · Ziwei Zhang · Xin Wang · Wenwu Zhu -
2022 Poster: Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift »
Zeyang Zhang · Xin Wang · Ziwei Zhang · Haoyang Li · Zhou Qin · Wenwu Zhu -
2022 Poster: NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search »
Yijian Qin · Ziwei Zhang · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2022 Spotlight: NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search »
Yijian Qin · Ziwei Zhang · Xin Wang · Zeyang Zhang · Wenwu Zhu -
2022 Poster: On the Convergence of Stochastic Multi-Objective Gradient Manipulation and Beyond »
Shiji Zhou · Wenpeng Zhang · Jiyan Jiang · Wenliang Zhong · Jinjie GU · Wenwu Zhu -
2021 Poster: Asynchronous Decentralized Online Learning »
Jiyan Jiang · Wenpeng Zhang · Jinjie GU · Wenwu Zhu -
2021 Poster: Curriculum Disentangled Recommendation with Noisy Multi-feedback »
Hong Chen · Yudong Chen · Xin Wang · Ruobing Xie · Rui Wang · Feng Xia · Wenwu Zhu -
2021 Poster: Disentangled Contrastive Learning on Graphs »
Haoyang Li · Xin Wang · Ziwei Zhang · Zehuan Yuan · Hang Li · Wenwu Zhu -
2021 Poster: Not All Low-Pass Filters are Robust in Graph Convolutional Networks »
Heng Chang · Yu Rong · Tingyang Xu · Yatao Bian · Shiji Zhou · Xin Wang · Junzhou Huang · Wenwu Zhu -
2020 Poster: Implicit Graph Neural Networks »
Fangda Gu · Heng Chang · Wenwu Zhu · Somayeh Sojoudi · Laurent El Ghaoui -
2019 Poster: Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos »
Yitian Yuan · Lin Ma · Jingwen Wang · Wei Liu · Wenwu Zhu -
2019 Poster: Learning Disentangled Representations for Recommendation »
Jianxin Ma · Chang Zhou · Peng Cui · Hongxia Yang · Wenwu Zhu -
2018 Poster: Weakly Supervised Dense Event Captioning in Videos »
Xin Wang · Wenbing Huang · Chuang Gan · Jingdong Wang · Wenwu Zhu · Junzhou Huang