`

Timezone: »

 
Poster
Fitting summary statistics of neural data with a differentiable spiking network simulator
Guillaume Bellec · Shuqi Wang · Alireza Modirshanechi · Johanni Brea · Wulfram Gerstner

Tue Dec 07 08:30 AM -- 10:00 AM (PST) @

Fitting network models to neural activity is an important tool in neuroscience. A popular approach is to model a brain area with a probabilistic recurrent spiking network whose parameters maximize the likelihood of the recorded activity. Although this is widely used, we show that the resulting model does not produce realistic neural activity. To correct for this, we suggest to augment the log-likelihood with terms that measure the dissimilarity between simulated and recorded activity. This dissimilarity is defined via summary statistics commonly used in neuroscience and the optimization is efficient because it relies on back-propagation through the stochastically simulated spike trains. We analyze this method theoretically and show empirically that it generates more realistic activity statistics. We find that it improves upon other fitting algorithms for spiking network models like GLMs (Generalized Linear Models) which do not usually rely on back-propagation. This new fitting algorithm also enables the consideration of hidden neurons which is otherwise notoriously hard, and we show that it can be crucial when trying to infer the network connectivity from spike recordings.

Author Information

Guillaume Bellec (Graz University of Technology)
Shuqi Wang (EPFL)
Alireza Modirshanechi (EPFL)
Johanni Brea (Swiss Federal Institute of Technology Lausanne)
Wulfram Gerstner (EPFL)

More from the Same Authors