Timezone: »
This paper studies model-based bandit and reinforcement learning (RL) with nonlinear function approximations. We propose to study convergence to approximate local maxima because we show that global convergence is statistically intractable even for one-layer neural net bandit with a deterministic reward. For both nonlinear bandit and RL, the paper presents a model-based algorithm, Virtual Ascent with Online Model Learner (ViOlin), which provably converges to a local maximum with sample complexity that only depends on the sequential Rademacher complexity of the model class. Our results imply novel global or local regret bounds on several concrete settings such as linear bandit with finite or sparse model class, and two-layer neural net bandit. A key algorithmic insight is that optimism may lead to over-exploration even for two-layer neural net model class. On the other hand, for convergence to local maxima, it suffices to maximize the virtual return if the model can also reasonably predict the gradient and Hessian of the real return.
Author Information
Kefan Dong (Stanford University)
Jiaqi Yang (Tsinghua University)
Tengyu Ma (Stanford University)
More from the Same Authors
-
2021 Spotlight: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 : Calibrated Ensembles: A Simple Way to Mitigate ID-OOD Accuracy Tradeoffs »
Ananya Kumar · Aditi Raghunathan · Tengyu Ma · Percy Liang -
2021 : Self-supervised Learning is More Robust to Dataset Imbalance »
Hong Liu · Jeff Z. HaoChen · Adrien Gaidon · Tengyu Ma -
2021 : Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification »
Ling Pan · Longbo Huang · Tengyu Ma · Huazhe Xu -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Poster: Label Noise SGD Provably Prefers Flat Global Minimizers »
Alex Damian · Tengyu Ma · Jason Lee -
2021 Poster: Going Beyond Linear RL: Sample Efficient Neural Function Approximation »
Baihe Huang · Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei · Runzhe Wang · Jiaqi Yang -
2021 Poster: Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations »
Yuping Luo · Tengyu Ma -
2021 Poster: Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP »
Zihan Zhang · Jiaqi Yang · Xiangyang Ji · Simon Du -
2021 Poster: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration »
Shengjia Zhao · Michael Kim · Roshni Sahoo · Tengyu Ma · Stefano Ermon -
2021 Poster: Why Do Pretrained Language Models Help in Downstream Tasks? An Analysis of Head and Prompt Tuning »
Colin Wei · Sang Michael Xie · Tengyu Ma -
2021 Oral: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: Safe Reinforcement Learning by Imagining the Near Future »
Garrett Thomas · Yuping Luo · Tengyu Ma -
2021 Poster: Provable Guarantees for Self-Supervised Deep Learning with Spectral Contrastive Loss »
Jeff Z. HaoChen · Colin Wei · Adrien Gaidon · Tengyu Ma -
2021 Poster: Design of Experiments for Stochastic Contextual Linear Bandits »
Andrea Zanette · Kefan Dong · Jonathan N Lee · Emma Brunskill -
2021 Poster: Optimal Gradient-based Algorithms for Non-concave Bandit Optimization »
Baihe Huang · Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei · Runzhe Wang · Jiaqi Yang -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Tengyu Ma, "Designing Explicit Regularizers for Deep Models" »
Tengyu Ma -
2019 Poster: Exploration via Hindsight Goal Generation »
Zhizhou Ren · Kefan Dong · Yuan Zhou · Qiang Liu · Jian Peng -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2017 Poster: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2017 Oral: On the Optimization Landscape of Tensor Decompositions »
Rong Ge · Tengyu Ma -
2016 Oral: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2015 Poster: Sum-of-Squares Lower Bounds for Sparse PCA »
Tengyu Ma · Avi Wigderson -
2014 Poster: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen -
2014 Oral: On Communication Cost of Distributed Statistical Estimation and Dimensionality »
Ankit Garg · Tengyu Ma · Huy Nguyen