Timezone: »
Recently, many researchers have made successful progress in building the AI systems for MOBA-game-playing with deep reinforcement learning, such as on Dota 2 and Honor of Kings. Even though these AI systems have achieved or even exceeded human-level performance, they still suffer from the lack of policy diversity. In this paper, we propose a novel Macro-Goals Guided framework, called MGG, to learn diverse policies in MOBA games. MGG abstracts strategies as macro-goals from human demonstrations and trains a Meta-Controller to predict these macro-goals. To enhance policy diversity, MGG samples macro-goals from the Meta-Controller prediction and guides the training process towards these goals. Experimental results on the typical MOBA game Honor of Kings demonstrate that MGG can execute diverse policies in different matches and lineups, and also outperform the state-of-the-art methods over 102 heroes.
Author Information
Yiming Gao (Tencent AI Lab)
Bei Shi (Tencent AI Lab)
Xueying Du (Tencent AI Lab)
Liang Wang (Tencent)
Guangwei Chen (Tencent AI Lab)
Zhenjie Lian (Tencent AI Lab)
Fuhao Qiu (Tencent AI Lab)
GUOAN HAN (Tencent AI Lab)
Weixuan Wang (Tencent AI Lab)
Deheng Ye (Tencent)
Qiang Fu (Tencent AI Lab)
Wei Yang (Tencent AI Lab)
Lanxiao Huang (Tencent)
More from the Same Authors
-
2021 : Maximum Entropy Population Based Training for Zero-Shot Human-AI Coordination »
Rui Zhao · Jinming Song · Hu Haifeng · Yang Gao · Yi Wu · Zhongqian Sun · Wei Yang -
2021 : TiKick: Toward Playing Multi-agent Football Full Games from Single-agent Demonstrations »
Shiyu Huang · Wenze Chen · Longfei Zhang · Shizhen Xu · Ziyang Li · Fengming Zhu · Deheng Ye · Ting Chen · Jun Zhu -
2022 Poster: SCL-WC: Cross-Slide Contrastive Learning for Weakly-Supervised Whole-Slide Image Classification »
Xiyue Wang · Jinxi Xiang · Jun Zhang · Sen Yang · Zhongyi Yang · Ming-Hui Wang · Jing Zhang · Wei Yang · Junzhou Huang · Xiao Han -
2023 Poster: Act As You Wish: Fine-grained Control of Motion Diffusion Model with Hierarchical Semantic Graphs »
Peng Jin · Yang Wu · Yanbo Fan · Zhongqian Sun · Wei Yang · Li Yuan -
2023 Poster: A Robust and Opponent-Aware League Training Method for StarCraft II »
Ruozi Huang · Xipeng Wu · Hongsheng Yu · Zhong Fan · Haobo Fu · Qiang Fu · Wei Yang -
2023 Poster: Policy Space Diversity for Non-Transitive Games »
Jian Yao · Weiming Liu · Haobo Fu · Yaodong Yang · Stephen McAleer · Qiang Fu · Wei Yang -
2023 Poster: Learning to Ignore: Mutual-Information Regularized Multi-Agent Policy Iteration »
Jiangxing Wang · Deheng Ye · Zongqing Lu -
2023 Poster: Automatic Grouping for Efficient Cooperative Multi-Agent Reinforcement Learning »
Yifan Zang · Jinmin He · Kai Li · Haobo Fu · Qiang Fu · Junliang Xing · Jian Cheng -
2023 Poster: Hokoff: Real Game Dataset from Honor of Kings and its Offline Reinforcement Learning Benchmarks »
yun qu · Boyuan Wang · Jianzhun Shao · Yuhang Jiang · Chen Chen · Zhenbin Ye · Liu Linc · Yang Feng · Lin Lai · Hongyang Qin · Minwen Deng · Juchao Zhuo · Deheng Ye · Qiang Fu · YANG GUANG · Wei Yang · Lanxiao Huang · Xiangyang Ji -
2022 Poster: Honor of Kings Arena: an Environment for Generalization in Competitive Reinforcement Learning »
Hua Wei · Jingxiao Chen · Xiyang Ji · Hongyang Qin · Minwen Deng · Siqin Li · Liang Wang · Weinan Zhang · Yong Yu · Liu Linc · Lanxiao Huang · Deheng Ye · Qiang Fu · Wei Yang -
2021 Poster: Coordinated Proximal Policy Optimization »
Zifan Wu · Chao Yu · Deheng Ye · Junge Zhang · haiyin piao · Hankz Hankui Zhuo -
2020 Poster: Towards Playing Full MOBA Games with Deep Reinforcement Learning »
Deheng Ye · Guibin Chen · Wen Zhang · Sheng Chen · Bo Yuan · Bo Liu · Jia Chen · Zhao Liu · Fuhao Qiu · Hongsheng Yu · Yinyuting Yin · Bei Shi · Liang Wang · Tengfei Shi · Qiang Fu · Wei Yang · Lanxiao Huang · Wei Liu