Timezone: »
Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming (MIP). While solvers are guaranteed to find optimal solutions given sufficient time, real-world applications typically require finding good solutions early on in the search to enable fast decision-making. While much of MIP research focuses on designing effective heuristics, the question of how to manage multiple MIP heuristics in a solver has not received equal attention. Generally, solvers follow hard-coded rules derived from empirical testing on broad sets of instances. Since the performance of heuristics is problem-dependent, using these general rules for a particular problem might not yield the best performance. In this work, we propose the first data-driven framework for scheduling heuristics in an exact MIP solver. By learning from data describing the performance of primal heuristics, we obtain a problem-specific schedule of heuristics that collectively find many solutions at minimal cost. We formalize the learning task and propose an efficient algorithm for computing such a schedule. Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on two classes of challenging instances.
Author Information
Antonia Chmiela (Zuse Institute Berlin)
Elias Khalil (University of Toronto)
Ambros Gleixner (Zuse Institute Berlin and HTW Berlin)
Andrea Lodi (École Polytechnique Montréal)
Sebastian Pokutta (Zuse Institute Berlin)
More from the Same Authors
-
2021 : Deep Neural Networks pruning via the Structured Perspective Regularization »
Matteo Cacciola · Andrea Lodi · Xinlin Li -
2022 : PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library with Linear Objective Function »
Bo Tang · Elias Khalil -
2022 : Accelerated Riemannian Optimization: Handling Constraints to Bound Geometric Penalties »
David Martinez-Rubio · Sebastian Pokutta -
2022 : Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus »
Yudong Xu · Elias Khalil · Scott Sanner -
2023 Poster: Learning Cuts via Enumeration Oracles »
Daniel Thuerck · Boro Sofranac · Marc E Pfetsch · Sebastian Pokutta -
2022 Poster: Fast Algorithms for Packing Proportional Fairness and its Dual »
Francisco Criado · David Martinez-Rubio · Sebastian Pokutta -
2022 Poster: Neur2SP: Neural Two-Stage Stochastic Programming »
Rahul Mihir Patel · Justin Dumouchelle · Elias Khalil · Merve Bodur -
2022 Poster: A Deep Reinforcement Learning Framework for Column Generation »
Cheng Chi · Amine Aboussalah · Elias Khalil · Juyoung Wang · Zoha Sherkat-Masoumi -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions »
Alejandro Carderera · Mathieu Besançon · Sebastian Pokutta -
2020 Poster: Hybrid Models for Learning to Branch »
Prateek Gupta · Maxime Gasse · Elias Khalil · Pawan K Mudigonda · Andrea Lodi · Yoshua Bengio -
2020 Poster: Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization »
Hassan Mortagy · Swati Gupta · Sebastian Pokutta -
2019 Poster: Exact Combinatorial Optimization with Graph Convolutional Neural Networks »
Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi