Timezone: »
In classic auction theory, reserve prices are known to be effective for improving revenue for the auctioneer against quasi-linear utility maximizing bidders. The introduction of reserve prices, however, usually do not help improve total welfare of the auctioneer and the bidders. In this paper, we focus on value maximizing bidders with return on spend constraints---a paradigm that has drawn considerable attention recently as more advertisers adopt auto-bidding algorithms in advertising platforms---and show that the introduction of reserve prices has a novel impact on the market. Namely, by choosing reserve prices appropriately the auctioneer can improve not only the total revenue but also the total welfare. Our results also demonstrate that reserve prices are robust to bidder types, i.e., reserve prices work well for different bidder types, such as value maximizers and utility maximizers, without using bidder type information. We generalize these results for a variety of auction mechanisms such as VCG, GSP, and first-price auctions. Moreover, we show how to combine these results with additive boosts to improve the welfare of the outcomes of the auction further. Finally, we complement our theoretical observations with an empirical study confirming the effectiveness of these ideas using data from online advertising auctions.
Author Information
Santiago Balseiro (Columbia University)
Yuan Deng (Google Research)
Jieming Mao (Google Research)
Vahab Mirrokni (Google Research)
Song Zuo (IIIS, Tsinghua University)
More from the Same Authors
-
2022 Poster: Posted Pricing and Dynamic Prior-independent Mechanisms with Value Maximizers »
Yuan Deng · Vahab Mirrokni · Hanrui Zhang -
2022 : Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2023 Poster: Learning via Look-Alike Clustering: A Precise Analysis of Model Generalization »
Adel Javanmard · Vahab Mirrokni -
2023 Poster: $k$-Means Clustering with Distance-Based Privacy »
Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2023 Poster: Replicable Clustering »
Hossein Esfandiari · Amin Karbasi · Vahab Mirrokni · Grigoris Velegkas · Felix Zhou -
2022 Poster: Differentially Private Graph Learning via Sensitivity-Bounded Personalized PageRank »
Alessandro Epasto · Vahab Mirrokni · Bryan Perozzi · Anton Tsitsulin · Peilin Zhong -
2022 Poster: Stars: Tera-Scale Graph Building for Clustering and Learning »
CJ Carey · Jonathan Halcrow · Rajesh Jayaram · Vahab Mirrokni · Warren Schudy · Peilin Zhong -
2022 Poster: Near-Optimal Private and Scalable $k$-Clustering »
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2022 Poster: Anonymous Bandits for Multi-User Systems »
Hossein Esfandiari · Vahab Mirrokni · Jon Schneider -
2022 Poster: Hierarchical Agglomerative Graph Clustering in Poly-Logarithmic Depth »
Laxman Dhulipala · David Eisenstat · Jakub Lacki · Vahab Mirrokni · Jessica Shi -
2022 Poster: Cluster Randomized Designs for One-Sided Bipartite Experiments »
Jennifer Brennan · Vahab Mirrokni · Jean Pouget-Abadie -
2021 Poster: Prior-independent Dynamic Auctions for a Value-maximizing Buyer »
Yuan Deng · Hanrui Zhang -
2021 Poster: Synthetic Design: An Optimization Approach to Experimental Design with Synthetic Controls »
Nick Doudchenko · Khashayar Khosravi · Jean Pouget-Abadie · Sébastien Lahaie · Miles Lubin · Vahab Mirrokni · Jann Spiess · guido imbens -
2021 Poster: Parallelizing Thompson Sampling »
Amin Karbasi · Vahab Mirrokni · Mohammad Shadravan -
2020 Poster: Smoothly Bounding User Contributions in Differential Privacy »
Alessandro Epasto · Mohammad Mahdian · Jieming Mao · Vahab Mirrokni · Lijie Ren -
2019 Poster: Prior-Free Dynamic Auctions with Low Regret Buyers »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: Contextual Bandits with Cross-Learning »
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider -
2019 Poster: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Oral: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni -
2017 : Spotlights »
Chara Podimata · Song Zuo · Zhe Feng · Anthony Kim