`

Timezone: »

 
Poster
Universal Graph Convolutional Networks
Di Jin · Zhizhi Yu · Cuiying Huo · Rui Wang · Xiao Wang · Dongxiao He · Jiawei Han

Thu Dec 09 04:30 PM -- 06:00 PM (PST) @
Graph Convolutional Networks (GCNs), aiming to obtain the representation of a node by aggregating its neighbors, have demonstrated great power in tackling various analytics tasks on graph (network) data. The remarkable performance of GCNs typically relies on the homophily assumption of networks, while such assumption cannot always be satisfied, since the heterophily or randomness are also widespread in real-world. This gives rise to one fundamental question: whether networks with different structural properties should adopt different propagation mechanisms? In this paper, we first conduct an experimental investigation. Surprisingly, we discover that there are actually segmentation rules for the propagation mechanism, i.e., 1-hop, 2-hop and $k$-nearest neighbor ($k$NN) neighbors are more suitable as neighborhoods of network with complete homophily, complete heterophily and randomness, respectively. However, the real-world networks are complex, and may present diverse structural properties, e.g., the network dominated by homophily may contain a small amount of randomness. So can we reasonably utilize these segmentation rules to design a universal propagation mechanism independent of the network structural assumption? To tackle this challenge, we develop a new universal GCN framework, namely U-GCN. It first introduces a multi-type convolution to extract information from 1-hop, 2-hop and $k$NN networks simultaneously, and then designs a discriminative aggregation to sufficiently fuse them aiming to given learning objectives. Extensive experiments demonstrate the superiority of U-GCN over state-of-the-arts. The code and data are available at https://github.com/jindi-tju.

Author Information

Di Jin (Amazon Alexa AI)
Zhizhi Yu (Tianjin University)
Cuiying Huo (Tianjin University)
Rui Wang (Tianjin University)
Xiao Wang (Beijing University of Post and Telecommunication)
Dongxiao He (Jilin University, China)
Jiawei Han (University of Illinois at Urbana-Champaign)

More from the Same Authors

  • 2021 Poster: Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training data »
    Qi Zhu · Natalia Ponomareva · Jiawei Han · Bryan Perozzi
  • 2021 Poster: Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization »
    Qi Zhu · Carl Yang · Yidan Xu · Haonan Wang · Chao Zhang · Jiawei Han
  • 2021 Poster: Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration »
    Xiao Wang · Hongrui Liu · Chuan Shi · Cheng Yang
  • 2021 Poster: COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining »
    Yu Meng · Chenyan Xiong · Payal Bajaj · saurabh tiwary · Paul Bennett · Jiawei Han · XIA SONG
  • 2019 : Poster Session I »
    Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Mohammad Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel
  • 2018 : Poster Session I »
    Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang
  • 2014 Poster: Robust Tensor Decomposition with Gross Corruption »
    Quanquan Gu · Huan Gui · Jiawei Han
  • 2012 Poster: Selective Labeling via Error Bound Minimization »
    Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han
  • 2009 Poster: Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models »
    Jing Gao · Feng Liang · Wei Fan · Yizhou Sun · Jiawei Han