Timezone: »
Deep reinforcement learning (RL) agents often fail to generalize beyond their training environments. To alleviate this problem, recent work has proposed the use of data augmentation. However, different tasks tend to benefit from different types of augmentations and selecting the right one typically requires expert knowledge. In this paper, we introduce three approaches for automatically finding an effective augmentation for any RL task. These are combined with two novel regularization terms for the policy and value function, required to make the use of data augmentation theoretically sound for actor-critic algorithms. Our method achieves a new state-of-the-art on the Procgen benchmark and outperforms popular RL algorithms on DeepMind Control tasks with distractors. In addition, our agent learns policies and representations which are more robust to changes in the environment that are irrelevant for solving the task, such as the background.
Author Information
Roberta Raileanu (NYU)
Maxwell Goldstein (New York University)
Denis Yarats (New York University)
Ilya Kostrikov (UC Berkeley)
Rob Fergus (DeepMind / NYU)
Rob Fergus is an Associate Professor of Computer Science at the Courant Institute of Mathematical Sciences, New York University. He received a Masters in Electrical Engineering with Prof. Pietro Perona at Caltech, before completing a PhD with Prof. Andrew Zisserman at the University of Oxford in 2005. Before coming to NYU, he spent two years as a post-doc in the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT, working with Prof. William Freeman. He has received several awards including a CVPR best paper prize, a Sloan Fellowship & NSF Career award and the IEEE Longuet-Higgins prize.
More from the Same Authors
-
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery »
Misha Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2021 : URLB: Unsupervised Reinforcement Learning Benchmark »
Misha Laskin · Denis Yarats · Hao Liu · Kimin Lee · Albert Zhan · Kevin Lu · Catherine Cang · Lerrel Pinto · Pieter Abbeel -
2021 : Imitation Learning from Pixel Observations for Continuous Control »
Samuel Cohen · Brandon Amos · Marc Deisenroth · Mikael Henaff · Eugene Vinitsky · Denis Yarats -
2021 : Mastering Visual Continuous Control: Improved Data-Augmented Reinforcement Learning »
Denis Yarats · Rob Fergus · Alessandro Lazaric · Lerrel Pinto -
2021 : Offline Reinforcement Learning with Implicit Q-Learning »
Ilya Kostrikov · Ashvin Nair · Sergey Levine -
2021 : Improving Zero-shot Generalization in Offline Reinforcement Learning using Generalized Similarity Functions »
Bogdan Mazoure · Ilya Kostrikov · Ofir Nachum · Jonathan Tompson -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2022 : Collaborating with language models for embodied reasoning »
Ishita Dasgupta · Christine Kaeser-Chen · Kenneth Marino · Arun Ahuja · Sheila Babayan · Felix Hill · Rob Fergus -
2022 : Converging to Unexploitable Policies in Continuous Control Adversarial Games »
Maxwell Goldstein · Noam Brown -
2022 Poster: Learning to Navigate Wikipedia by Taking Random Walks »
Manzil Zaheer · Kenneth Marino · Will Grathwohl · John Schultz · Wendy Shang · Sheila Babayan · Arun Ahuja · Ishita Dasgupta · Christine Kaeser-Chen · Rob Fergus -
2022 Poster: Unsupervised Reinforcement Learning with Contrastive Intrinsic Control »
Michael Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel -
2020 : Contributed Talk - Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences »
Alexander Rives · Siddharth Goyal · Joshua Meier · Zeming Lin · Demi Guo · Myle Ott · Larry Zitnick · Rob Fergus -
2020 Poster: The NetHack Learning Environment »
Heinrich Küttler · Nantas Nardelli · Alexander Miller · Roberta Raileanu · Marco Selvatici · Edward Grefenstette · Tim Rocktäschel -
2019 Poster: Hierarchical Decision Making by Generating and Following Natural Language Instructions »
Hengyuan Hu · Denis Yarats · Qucheng Gong · Yuandong Tian · Mike Lewis -
2016 Poster: Learning Multiagent Communication with Backpropagation »
Sainbayar Sukhbaatar · arthur szlam · Rob Fergus -
2014 Poster: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network »
David Eigen · Christian Puhrsch · Rob Fergus -
2014 Poster: Exploiting Linear Structure Within Convolutional Networks for Efficient Evaluation »
Emily Denton · Wojciech Zaremba · Joan Bruna · Yann LeCun · Rob Fergus -
2014 Spotlight: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network »
David Eigen · Christian Puhrsch · Rob Fergus -
2014 Poster: Learning to Discover Efficient Mathematical Identities »
Wojciech Zaremba · Karol Kurach · Rob Fergus -
2014 Spotlight: Learning to Discover Efficient Mathematical Identities »
Wojciech Zaremba · Karol Kurach · Rob Fergus -
2013 Tutorial: Deep Learning for Computer Vision »
Rob Fergus -
2011 Workshop: Machine Learning meets Computational Photography »
Michael Hirsch · Stefan Harmeling · Rob Fergus · Peyman Milanfar -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2011 Session: Spotlight Session 1 »
Rob Fergus -
2010 Session: Oral Session 17 »
Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2009 Poster: Fast Image Deconvolution using Hyper-Laplacian Priors »
Dilip Krishnan · Rob Fergus -
2009 Spotlight: Fast Image Deconvolution using Hyper-Laplacian Priors »
Dilip Krishnan · Rob Fergus -
2009 Poster: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2009 Oral: Semi-Supervised Learning in Gigantic Image Collections »
Rob Fergus · Yair Weiss · Antonio Torralba -
2008 Poster: Spectral Hashing »
Yair Weiss · Antonio Torralba · Rob Fergus -
2007 Spotlight: Object Recognition by Scene Alignment »
Bryan C Russell · Antonio Torralba · Ce Liu · Rob Fergus · William Freeman -
2007 Poster: Object Recognition by Scene Alignment »
Bryan C Russell · Antonio Torralba · Ce Liu · Rob Fergus · William Freeman