Timezone: »
Unsupervised domain adaptation has attracted appealing academic attentions by transferring knowledge from labeled source domain to unlabeled target domain. However, most existing methods assume the source data are drawn from a single domain, which cannot be successfully applied to explore complementarily transferable knowledge from multiple source domains with large distribution discrepancies. Moreover, they require access to source data during training, which are inefficient and unpractical due to privacy preservation and memory storage. To address these challenges, we develop a novel Confident-Anchor-induced multi-source-free Domain Adaptation (CAiDA) model, which is a pioneer exploration of knowledge adaptation from multiple source domains to the unlabeled target domain without any source data, but with only pre-trained source models. Specifically, a source-specific transferable perception module is proposed to automatically quantify the contributions of the complementary knowledge transferred from multi-source domains to the target domain. To generate pseudo labels for the target domain without access to the source data, we develop a confident-anchor-induced pseudo label generator by constructing a confident anchor group and assigning each unconfident target sample with a semantic-nearest confident anchor. Furthermore, a class-relationship-aware consistency loss is proposed to preserve consistent inter-class relationships by aligning soft confusion matrices across domains. Theoretical analysis answers why multi-source domains are better than a single source domain, and establishes a novel learning bound to show the effectiveness of exploiting multi-source domains. Experiments on several representative datasets illustrate the superiority of our proposed CAiDA model. The code is available at https://github.com/Learning-group123/CAiDA.
Author Information
Jiahua Dong (Shenyang Institute of Automation, Chinese Academy of Sciences)
Zhen Fang (University of Technology Sydney)
Anjin Liu (University of Technology Sydney)
Gan Sun (Chinese Academy of Sciences)
Tongliang Liu (The University of Sydney)
More from the Same Authors
-
2021 Spotlight: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation »
Haoang Chi · Feng Liu · Wenjing Yang · Long Lan · Tongliang Liu · Bo Han · William Cheung · James Kwok -
2022 Poster: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 Poster: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Poster: Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks »
Jianan Zhou · Jianing Zhu · Jingfeng ZHANG · Tongliang Liu · Gang Niu · Bo Han · Masashi Sugiyama -
2022 Poster: Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Learning »
Shikun Li · Xiaobo Xia · Hansong Zhang · Yibing Zhan · Shiming Ge · Tongliang Liu -
2022 Poster: Towards Lightweight Black-Box Attack Against Deep Neural Networks »
Chenghao Sun · Yonggang Zhang · Wan Chaoqun · Qizhou Wang · Ya Li · Tongliang Liu · Bo Han · Xinmei Tian -
2022 Spotlight: Lightning Talks 6A-4 »
Xiu-Shen Wei · Konstantina Dritsa · Guillaume Huguet · ABHRA CHAUDHURI · Zhenbin Wang · Kevin Qinghong Lin · Yutong Chen · Jianan Zhou · Yongsen Mao · Junwei Liang · Jinpeng Wang · Mao Ye · Yiming Zhang · Aikaterini Thoma · H.-Y. Xu · Daniel Sumner Magruder · Enwei Zhang · Jianing Zhu · Ronglai Zuo · Massimiliano Mancini · Hanxiao Jiang · Jun Zhang · Fangyun Wei · Faen Zhang · Ioannis Pavlopoulos · Zeynep Akata · Xiatian Zhu · Jingfeng ZHANG · Alexander Tong · Mattia Soldan · Chunhua Shen · Yuxin Peng · Liuhan Peng · Michael Wray · Tongliang Liu · Anjan Dutta · Yu Wu · Oluwadamilola Fasina · Panos Louridas · Angel Chang · Manik Kuchroo · Manolis Savva · Shujie LIU · Wei Zhou · Rui Yan · Gang Niu · Liang Tian · Bo Han · Eric Z. XU · Guy Wolf · Yingying Zhu · Brian Mak · Difei Gao · Masashi Sugiyama · Smita Krishnaswamy · Rong-Cheng Tu · Wenzhe Zhao · Weijie Kong · Chengfei Cai · WANG HongFa · Dima Damen · Bernard Ghanem · Wei Liu · Mike Zheng Shou -
2022 Spotlight: Adversarial Training with Complementary Labels: On the Benefit of Gradually Informative Attacks »
Jianan Zhou · Jianing Zhu · Jingfeng ZHANG · Tongliang Liu · Gang Niu · Bo Han · Masashi Sugiyama -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Watermarking for Out-of-distribution Detection »
Qizhou Wang · Feng Liu · Yonggang Zhang · Jing Zhang · Chen Gong · Tongliang Liu · Bo Han -
2022 Spotlight: Learning Causally Invariant Representations for Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · MA Kaili · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 Spotlight: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 Spotlight: Lightning Talks 2B-4 »
Feiyi Xiao · Amrutha Saseendran · Kwangho Kim · Keyu Yan · Changjian Shui · Guangxi Li · Shikun Li · Edward Kennedy · Man Zhou · Gezheng Xu · Ruilin Ye · Xiaobo Xia · Junjie Tang · Kathrin Skubch · Stefan Falkner · Hansong Zhang · Jose Zubizarreta · Huaying Fang · Xuanqiang Zhao · Jie Huang · Qi CHEN · Yibing Zhan · Jiaqi Li · Xin Wang · Ruibin Xi · Feng Zhao · Margret Keuper · Charles Ling · Shiming Ge · Chengjun Xie · Tongliang Liu · Tal Arbel · Chongyi Li · Danfeng Hong · Boyu Wang · Christian Gagné -
2022 Spotlight: Estimating Noise Transition Matrix with Label Correlations for Noisy Multi-Label Learning »
Shikun Li · Xiaobo Xia · Hansong Zhang · Yibing Zhan · Shiming Ge · Tongliang Liu -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Watermarking for Out-of-distribution Detection »
Qizhou Wang · Feng Liu · Yonggang Zhang · Jing Zhang · Chen Gong · Tongliang Liu · Bo Han -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Out-of-Distribution Detection with An Adaptive Likelihood Ratio on Informative Hierarchical VAE »
Yewen Li · Chaojie Wang · Xiaobo Xia · Tongliang Liu · xin miao · Bo An -
2022 Poster: Class-Dependent Label-Noise Learning with Cycle-Consistency Regularization »
De Cheng · Yixiong Ning · Nannan Wang · Xinbo Gao · Heng Yang · Yuxuan Du · Bo Han · Tongliang Liu -
2022 Poster: Pluralistic Image Completion with Gaussian Mixture Models »
Xiaobo Xia · Wenhao Yang · Jie Ren · Yewen Li · Yibing Zhan · Bo Han · Tongliang Liu -
2021 Poster: Understanding and Improving Early Stopping for Learning with Noisy Labels »
Yingbin Bai · Erkun Yang · Bo Han · Yanhua Yang · Jiatong Li · Yinian Mao · Gang Niu · Tongliang Liu -
2021 Poster: Probabilistic Margins for Instance Reweighting in Adversarial Training »
qizhou wang · Feng Liu · Bo Han · Tongliang Liu · Chen Gong · Gang Niu · Mingyuan Zhou · Masashi Sugiyama -
2021 Poster: Instance-dependent Label-noise Learning under a Structural Causal Model »
Yu Yao · Tongliang Liu · Mingming Gong · Bo Han · Gang Niu · Kun Zhang -
2021 Poster: TOHAN: A One-step Approach towards Few-shot Hypothesis Adaptation »
Haoang Chi · Feng Liu · Wenjing Yang · Long Lan · Tongliang Liu · Bo Han · William Cheung · James Kwok -
2020 Poster: Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning »
Yu Yao · Tongliang Liu · Bo Han · Mingming Gong · Jiankang Deng · Gang Niu · Masashi Sugiyama -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 Poster: Are Anchor Points Really Indispensable in Label-Noise Learning? »
Xiaobo Xia · Tongliang Liu · Nannan Wang · Bo Han · Chen Gong · Gang Niu · Masashi Sugiyama -
2019 Poster: Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence »
Fengxiang He · Tongliang Liu · Dacheng Tao