Timezone: »
Poster
Exact Privacy Guarantees for Markov Chain Implementations of the Exponential Mechanism with Artificial Atoms
Jeremy Seeman · Matthew Reimherr · Aleksandra Slavković
Implementations of the exponential mechanism in differential privacy often require sampling from intractable distributions. When approximate procedures like Markov chain Monte Carlo (MCMC) are used, the end result incurs costs to both privacy and accuracy. Existing work has examined these effects asymptotically, but implementable finite sample results are needed in practice so that users can specify privacy budgets in advance and implement samplers with exact privacy guarantees. In this paper, we use tools from ergodic theory and perfect simulation to design exact finite runtime sampling algorithms for the exponential mechanism by introducing an intermediate modified target distribution using artificial atoms. We propose an additional modification of this sampling algorithm that maintains its $\epsilon$-DP guarantee and has improved runtime at the cost of some utility. We then compare these methods in scenarios where we can explicitly calculate a $\delta$ cost (as in $(\epsilon, \delta)$-DP) incurred when using standard MCMC techniques. Much as there is a well known trade-off between privacy and utility, we demonstrate that there is also a trade-off between privacy guarantees and runtime.
Author Information
Jeremy Seeman (Pennsylvania State University)
PhD student, Statistics, Penn State University
Matthew Reimherr (Penn State University)
Aleksandra Slavković (Pennsylvania State University)
More from the Same Authors
-
2022 Poster: Shape And Structure Preserving Differential Privacy »
Carlos Soto · Karthik Bharath · Matthew Reimherr · Aleksandra Slavković -
2021 Poster: Differential Privacy Over Riemannian Manifolds »
Matthew Reimherr · Karthik Bharath · Carlos Soto -
2021 Poster: A Highly-Efficient Group Elastic Net Algorithm with an Application to Function-On-Scalar Regression »
Tobia Boschi · Matthew Reimherr · Francesca Chiaromonte -
2018 Poster: Differentially Private Uniformly Most Powerful Tests for Binomial Data »
Jordan Awan · Aleksandra Slavković