Timezone: »
Recently, there has been a lot of excitement around ML-enhanced (or learned) algorithms and data structures. For example, there has been work on applying machine learning to improve query optimization, indexing, storage layouts, scheduling, log-structured merge trees, sorting, compression, sketches, among many other data management tasks. Arguably, the ideas behind these techniques are similar: machine learning is used to model the data and/or workload in order to derive a more efficient algorithm or data structure. Ultimately, what these techniques will allow us to build are “instance-optimized” systems; systems that self-adjust to a given workload and data distribution to provide unprecedented performance and avoid the need for tuning by an administrator.
In this talk, I will first provide an overview of the opportunities and limitations of current ML-enhanced algorithms and data structures, present initial results of SageDB, a first instance-optimized system we are building as part of DSAIL@CSAIL at MIT, and finally outline remaining challenges and future directions.
Author Information
Tim Kraska (MIT)
More from the Same Authors
-
2019 Poster: Park: An Open Platform for Learning-Augmented Computer Systems »
Hongzi Mao · Parimarjan Negi · Akshay Narayan · Hanrui Wang · Jiacheng Yang · Haonan Wang · Ryan Marcus · Ravichandra Addanki · Mehrdad Khani Shirkoohi · Songtao He · Vikram Nathan · Frank Cangialosi · Shaileshh Venkatakrishnan · Wei-Hung Weng · Song Han · Tim Kraska · Dr.Mohammad Alizadeh