Timezone: »

 
Invited Talk: Lessons from robust machine learning
Aditi Raghunathan

Current machine learning (ML) methods are primarily centered around improving in-distribution generalization where models are evaluated on new points drawn from nearly the same distribution as the training data. On the other hand, robustness and fairness involve reasoning about out-of-distribution performance such as accuracy on protected groups or perturbed inputs, and reliability even in the presence of spurious correlations. In this talk, I will describe an important lesson from robustness: in order to improve out-of-distribution performance, we often need to question the common assumptions in ML. In particular, we will see that ‘more data’, ‘bigger models’, or ‘fine-tuning pretrained features’ which improve in-distribution generalization often fail out-of-distribution.

Author Information

Aditi Raghunathan (Stanford University)

More from the Same Authors

  • 2021 : Calibrated Ensembles: A Simple Way to Mitigate ID-OOD Accuracy Tradeoffs »
    Ananya Kumar · Aditi Raghunathan · Tengyu Ma · Percy Liang
  • 2020 Poster: The Pitfalls of Simplicity Bias in Neural Networks »
    Harshay Shah · Kaustav Tamuly · Aditi Raghunathan · Prateek Jain · Praneeth Netrapalli
  • 2020 Poster: Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming »
    Sumanth Dathathri · Krishnamurthy Dvijotham · Alexey Kurakin · Aditi Raghunathan · Jonathan Uesato · Rudy Bunel · Shreya Shankar · Jacob Steinhardt · Ian Goodfellow · Percy Liang · Pushmeet Kohli
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 Poster: Unlabeled Data Improves Adversarial Robustness »
    Yair Carmon · Aditi Raghunathan · Ludwig Schmidt · John Duchi · Percy Liang
  • 2018 Poster: Semidefinite relaxations for certifying robustness to adversarial examples »
    Aditi Raghunathan · Jacob Steinhardt · Percy Liang
  • 2017 Poster: Learning Mixture of Gaussians with Streaming Data »
    Aditi Raghunathan · Prateek Jain · Ravishankar Krishnawamy