Timezone: »
As machine learning black boxes are increasingly being deployed in domains such as healthcare and criminal justice, there is growing emphasis on building tools and techniques for explaining these black boxes in an interpretable manner. Such explanations are being leveraged by domain experts to diagnose systematic errors and underlying biases of black boxes. In this talk, I will present some of our recent research that sheds light on the vulnerabilities of popular post hoc explanation techniques such as LIME and SHAP, and also introduce novel methods to address some of these vulnerabilities. More specifically, I will first demonstrate that these methods are brittle, unstable, and are vulnerable to a variety of adversarial attacks. Then, I will discuss two solutions to address some of the aforementioned vulnerabilities–(i) a Bayesian framework that captures the uncertainty associated with post hoc explanations and in turn allows us to generate explanations with user specified levels of confidence, and (ii) a framework based on adversarial training that is designed to make post hoc explanationsmore stable and robust to shifts in the underlying data; I will conclude the talk by discussing our recent theoretical results which shed light on the equivalence and robustness of state-of-the-art explanation methods.
Author Information
Himabindu Lakkaraju (Harvard)
Hima Lakkaraju is an Assistant Professor at Harvard University focusing on explainability, fairness, and robustness of machine learning models. She has also been working with various domain experts in criminal justice and healthcare to understand the real world implications of explainable and fair ML. Hima has recently been named one of the 35 innovators under 35 by MIT Tech Review, and has received best paper awards at SIAM International Conference on Data Mining (SDM) and INFORMS. She has given invited workshop talks at ICML, NeurIPS, AAAI, and CVPR, and her research has also been covered by various popular media outlets including the New York Times, MIT Tech Review, TIME, and Forbes. For more information, please visit: https://himalakkaraju.github.io/
More from the Same Authors
-
2022 : A Human-Centric Take on Model Monitoring »
Murtuza Shergadwala · Himabindu Lakkaraju · Krishnaram Kenthapadi -
2022 : Invited talk (Dr Hima Lakkaraju) - "A Brief History of Explainable AI: From Simple Rules to Large Pretrained Models" »
Himabindu Lakkaraju -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 : Q/A Session »
Alexander Feldman · Himabindu Lakkaraju -
2021 : [IT3] Towards Reliable and Robust Model Explanations »
Himabindu Lakkaraju -
2020 Poster: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Spotlight: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Poster: Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses »
Kaivalya Rawal · Himabindu Lakkaraju -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh