Timezone: »
State-of-the-art semantic or instance segmentation deep neural networks (DNNs) are usually trained on a closed set of semantic classes. As such, they are ill-equipped to handle previously-unseen objects. However, detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving, especially if they appear on the road ahead. While some methods have tackled the tasks of anomalous or out-of-distribution object segmentation, progress remains slow, in large part due to the lack of solid benchmarks; existing datasets either consist of synthetic data, or suffer from label inconsistencies. In this paper, we bridge this gap by introducing the "SegmentMeIfYouCan" benchmark. Our benchmark addresses two tasks: Anomalous object segmentation, which considers any previously-unseen object category; and road obstacle segmentation, which focuses on any object on the road, may it be known or unknown.We provide two corresponding datasets together with a test suite performing an in-depth method analysis, considering both established pixel-wise performance metrics and recent component-wise ones, which are insensitive to object sizes. We empirically evaluate multiple state-of-the-art baseline methods, including several models specifically designed for anomaly / obstacle segmentation, on our datasets and on public ones, using our test suite.The anomaly and obstacle segmentation results show that our datasets contribute to the diversity and difficulty of both data landscapes.
Author Information
Robin Chan (University of Wuppertal)
Krzysztof Lis (EPFL)
Svenja Uhlemeyer (University of Wuppertal)
Hermann Blum (ETH Zürich)
Sina Honari (EPFL)
Roland Siegwart (ETH Zurich)
Pascal Fua (EPFL, Switzerland)
Mathieu Salzmann (EPFL)
Matthias Rottmann (University of Wuppertal)
More from the Same Authors
-
2021 : Benchmarking Bias Mitigation Algorithms in Representation Learning through Fairness Metrics »
Charan Reddy · Deepak Sharma · Soroush Mehri · Adriana Romero Soriano · Samira Shabanian · Sina Honari -
2021 : Continual Learning of Semantic Segmentation using Complementary 2D-3D Data Representations »
Jonas Frey · Hermann Blum · Francesco Milano · Roland Siegwart · Cesar Cadena -
2022 Poster: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Poster: Robust Binary Models by Pruning Randomly-initialized Networks »
Chen Liu · Ziqi Zhao · Sabine Süsstrunk · Mathieu Salzmann -
2022 Poster: UQGAN: A Unified Model for Uncertainty Quantification of Deep Classifiers trained via Conditional GANs »
Philipp Oberdiek · Gernot Fink · Matthias Rottmann -
2021 : Continual Learning of Semantic Segmentation using Complementary 2D-3D Data Representations »
Jonas Frey · Hermann Blum · Francesco Milano · Roland Siegwart · Cesar Cadena -
2021 Poster: Distilling Image Classifiers in Object Detectors »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2021 Poster: Learning Transferable Adversarial Perturbations »
Krishna kanth Nakka · Mathieu Salzmann -
2020 : Contributed Talk 2: Witness Autoencoder: Shaping the Latent Space with Witness Complexes »
Anastasiia Varava · Danica Kragic · Simon Schönenberger · Jen Jen Chung · Roland Siegwart · Vladislav Polianskii -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2020 Poster: UCLID-Net: Single View Reconstruction in Object Space »
Benoit Guillard · Edoardo Remelli · Pascal Fua -
2020 Poster: DISK: Learning local features with policy gradient »
Michał Tyszkiewicz · Pascal Fua · Eduard Trulls -
2020 Poster: MeshSDF: Differentiable Iso-Surface Extraction »
Edoardo Remelli · Artem Lukoianov · Stephan Richter · Benoit Guillard · Timur Bagautdinov · Pierre Baque · Pascal Fua -
2020 Poster: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2020 Spotlight: ExpandNets: Linear Over-parameterization to Train Compact Convolutional Networks »
Shuxuan Guo · Jose M. Alvarez · Mathieu Salzmann -
2020 Spotlight: DISK: Learning local features with policy gradient »
Michał Tyszkiewicz · Pascal Fua · Eduard Trulls -
2020 Spotlight: MeshSDF: Differentiable Iso-Surface Extraction »
Edoardo Remelli · Artem Lukoianov · Stephan Richter · Benoit Guillard · Timur Bagautdinov · Pierre Baque · Pascal Fua -
2019 Demonstration: Real Time CFD simulations with 3D Mesh Convolutional Networks »
Pierre Baque · Pascal Fua · François Fleuret -
2019 Poster: On Adversarial Mixup Resynthesis »
Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal -
2019 Poster: Backpropagation-Friendly Eigendecomposition »
Wei Wang · Zheng Dang · Yinlin Hu · Pascal Fua · Mathieu Salzmann -
2018 Poster: Unsupervised Depth Estimation, 3D Face Rotation and Replacement »
Joel Ruben Antony Moniz · Christopher Beckham · Simon Rajotte · Sina Honari · Chris Pal -
2018 Poster: LF-Net: Learning Local Features from Images »
Yuki Ono · Eduard Trulls · Pascal Fua · Kwang Moo Yi -
2017 Poster: Compression-aware Training of Deep Networks »
Jose Alvarez · Mathieu Salzmann -
2017 Poster: Deep Subspace Clustering Networks »
Pan Ji · Tong Zhang · Hongdong Li · Mathieu Salzmann · Ian Reid -
2017 Poster: Learning Active Learning from Data »
Ksenia Konyushkova · Raphael Sznitman · Pascal Fua -
2016 Poster: Learning the Number of Neurons in Deep Networks »
Jose M. Alvarez · Mathieu Salzmann -
2015 Poster: Kullback-Leibler Proximal Variational Inference »
Mohammad Emtiyaz Khan · Pierre Baque · François Fleuret · Pascal Fua -
2013 Poster: Non-Linear Domain Adaptation with Boosting »
Carlos J Becker · Christos M Christoudias · Pascal Fua