Timezone: »
We introduce Argoverse 2 (AV2) — a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions be- tween the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for “scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry — sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
Author Information
Benjamin Wilson (Georgia Tech)
William Qi (Argo AI)
Tanmay Agarwal
John Lambert (Georgia Tech, Argo AI)
Jagjeet Singh (Argo AI)
Siddhesh Khandelwal (University of British Columbia)
Bowen Pan (Massachusetts Institute of Technology)
Ratnesh Kumar (INRIA)
Andrew Hartnett (Argo AI)
Jhony Kaesemodel Pontes (Queensland University of Technology)
Deva Ramanan (Carnegie Mellon University)
Peter Carr (Australian National University)
James Hays (Argo AI / Georgia Tech)
More from the Same Authors
-
2021 Spotlight: Neural Scene Flow Prior »
Xueqian Li · Jhony Kaesemodel Pontes · Simon Lucey -
2021 Spotlight: ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction »
Gengshan Yang · Deqing Sun · Varun Jampani · Daniel Vlasic · Forrester Cole · Ce Liu · Deva Ramanan -
2021 : Trust, but Verify: Cross-Modality Fusion for HD Map Change Detection »
John Lambert · James Hays -
2021 : The CLEAR Benchmark: Continual LEArning on Real-World Imagery »
Zhiqiu Lin · Jia Shi · Deepak Pathak · Deva Ramanan -
2022 Poster: Learning With an Evolving Class Ontology »
Zhiqiu Lin · Deepak Pathak · Yu-Xiong Wang · Deva Ramanan · Shu Kong -
2022 Poster: Learning to Discover and Detect Objects »
Vladimir Fomenko · Ismail Elezi · Deva Ramanan · Laura Leal-Taixé · Aljosa Osep -
2022 Poster: Iterative Scene Graph Generation »
Siddhesh Khandelwal · Leonid Sigal -
2021 Poster: Neural Scene Flow Prior »
Xueqian Li · Jhony Kaesemodel Pontes · Simon Lucey -
2021 Poster: ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction »
Gengshan Yang · Deqing Sun · Varun Jampani · Daniel Vlasic · Forrester Cole · Ce Liu · Deva Ramanan -
2021 Poster: IA-RED$^2$: Interpretability-Aware Redundancy Reduction for Vision Transformers »
Bowen Pan · Rameswar Panda · Yifan Jiang · Zhangyang Wang · Rogerio Feris · Aude Oliva -
2021 Poster: NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild »
Jason Zhang · Gengshan Yang · Shubham Tulsiani · Deva Ramanan -
2019 : ArgoAI Challenge »
Ming-Fang Chang · Jagjeet Singh · Andrew Hartnett · Nicolas Cebron · Chenxu Luo · Xin Huang -
2019 Poster: Volumetric Correspondence Networks for Optical Flow »
Gengshan Yang · Deva Ramanan -
2018 Poster: Informative Features for Model Comparison »
Wittawat Jitkrittum · Heishiro Kanagawa · Patsorn Sangkloy · James Hays · Bernhard Schölkopf · Arthur Gretton -
2017 Poster: Learning to Model the Tail »
Yu-Xiong Wang · Deva Ramanan · Martial Hebert -
2017 Poster: Attentional Pooling for Action Recognition »
Rohit Girdhar · Deva Ramanan