Timezone: »
Object manipulation from 3D visual inputs poses many challenges on building generalizable perception and policy models. However, 3D assets in existing benchmarks mostly lack the diversity of 3D shapes that align with real-world intra-class complexity in topology and geometry. Here we propose SAPIEN Manipulation Skill Benchmark (ManiSkill) to benchmark manipulation skills over diverse objects in a full-physics simulator. 3D assets in ManiSkill include large intra-class topological and geometric variations. Tasks are carefully chosen to cover distinct types of manipulation challenges. Latest progress in 3D vision also makes us believe that we should customize the benchmark so that the challenge is inviting to researchers working on 3D deep learning. To this end, we simulate a moving panoramic camera that returns ego-centric point clouds or RGB-D images. In addition, we would like ManiSkill to serve a broad set of researchers interested in manipulation research. Besides supporting the learning of policies from interactions, we also support learning-from-demonstrations (LfD) methods, by providing a large number of high-quality demonstrations (~36,000 successful trajectories, ~1.5M point cloud/RGB-D frames in total). We provide baselines using 3D deep learning and LfD algorithms. All code of our benchmark (simulator, environment, SDK, and baselines) is open-sourced (\href{https://github.com/haosulab/ManiSkill}{Github repo}), and a challenge facing interdisciplinary researchers will be held based on the benchmark.
Author Information
Tongzhou Mu (University of California, San Diego)
Zhan Ling (UC San Diego)
Fanbo Xiang (University of California, San Diego)
Derek Yang (UC San Diego)
Xuanlin Li (UC San Diego)
Stone Tao (University of California - San Diego)
Zhiao Huang (University of California San Diego)
Zhiwei Jia (University of California, San Diego)
Hao Su (Stanford)
More from the Same Authors
-
2021 : From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation »
Yuzhe Qin · Hao Su · Xiaolong Wang -
2021 : LUMINOUS: Indoor Scene Generation for Embodied AI Challenges »
Yizhou Zhao · Kaixiang Lin · Zhiwei Jia · Qiaozi Gao · Govindarajan Thattai · Jesse Thomason · Gaurav Sukhatme -
2022 : Abstract-to-Executable Trajectory Translation for One-Shot Task Generalization »
Stone Tao · Xiaochen Li · Tongzhou Mu · Zhiao Huang · Yuzhe Qin · Hao Su -
2022 : VARIATIONAL REPARAMETRIZED POLICY LEARNING WITH DIFFERENTIABLE PHYSICS »
Zhiao Huang · Litian Liang · Zhan Ling · Xuanlin Li · Chuang Gan · Hao Su -
2022 : Emergent collective intelligence from massive-agent cooperation and competition »
Hanmo Chen · Stone Tao · JIAXIN CHEN · Weihan Shen · Xihui Li · Chenghui Yu · Sikai Cheng · Xiaolong Zhu · Xiu Li -
2021 Poster: Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation »
Nicklas Hansen · Hao Su · Xiaolong Wang -
2021 Poster: Particle Cloud Generation with Message Passing Generative Adversarial Networks »
Raghav Kansal · Javier Duarte · Hao Su · Breno Orzari · Thiago Tomei · Maurizio Pierini · Mary Touranakou · jean-roch vlimant · Dimitrios Gunopulos -
2020 Poster: Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs »
Hao Tang · Zhiao Huang · Jiayuan Gu · Bao-Liang Lu · Hao Su -
2020 Poster: RD$^2$: Reward Decomposition with Representation Decomposition »
Zichuan Lin · Derek Yang · Li Zhao · Tao Qin · Guangwen Yang · Tie-Yan Liu -
2020 Poster: Refactoring Policy for Compositional Generalizability using Self-Supervised Object Proposals »
Tongzhou Mu · Jiayuan Gu · Zhiwei Jia · Hao Tang · Hao Su -
2019 Poster: Fully Parameterized Quantile Function for Distributional Reinforcement Learning »
Derek Yang · Li Zhao · Zichuan Lin · Tao Qin · Jiang Bian · Tie-Yan Liu -
2019 Poster: Distributional Reward Decomposition for Reinforcement Learning »
Zichuan Lin · Li Zhao · Derek Yang · Tao Qin · Tie-Yan Liu · Guangwen Yang -
2019 Poster: Mapping State Space using Landmarks for Universal Goal Reaching »
Zhiao Huang · Fangchen Liu · Hao Su -
2017 Poster: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space »
Charles Ruizhongtai Qi · Li Yi · Hao Su · Leonidas Guibas