Timezone: »
Recent advances in remote sensing products allow near-real time monitoring of the Earth’s surface. Despite increasing availability of near-daily time-series of satellite imagery, there has been little exploration of deep learning methods to utilize the unprecedented temporal density of observations. This is particularly interesting in crop monitoring where time-series remote sensing data has been used frequently to exploit phenological differences of crops in the growing cycle over time. In this work, we present DENETHOR: The DynamicEarthNET dataset for Harmonized, inter-Operabel, analysis-Ready, daily crop monitoring from space. Our dataset contains daily, analysis-ready Planet Fusion data together with Sentinel-1 radar and Sentinel-2 optical time-series for crop type classification in Northern Germany. Our baseline experiments underline that incorporating the available spatial and temporal information fully may not be straightforward and could require the design of tailored architectures. The dataset presents two main challenges to the community: Exploit the temporal dimension for improved crop classification and ensure that models can handle a domain shift to a different year.
Author Information
Lukas Kondmann (German Aerospace Center)
Aysim Toker (TUM)
Marc Rußwurm (Technical University of Munich)
PhD Candidate @ TU Munich. Computer Vision Research Group - Chair of Remote Sensing Technology. Research in methodical remote sensing for multi-temporal satellite image analysis with recurrent and convolutional networks. Research applications in disaster response and vegetation modeling.
Andrés Camero (German Aerospace Center)
Devis Peressuti (None)
Grega Milcinski
Pierre-Philippe Mathieu
Nicolas Longepe (European Space Agency (ESA))
Timothy Davis
Giovanni Marchisio (Planet)
Laura Leal-Taixé (TUM)
Xiaoxiang Zhu (Technical University of Munich)
More from the Same Authors
-
2021 : STEP: Segmenting and Tracking Every Pixel »
Mark Weber · Jun Xie · Maxwell Collins · Yukun Zhu · Paul Voigtlaender · Hartwig Adam · Bradley Green · Andreas Geiger · Bastian Leibe · Daniel Cremers · Aljosa Osep · Laura Leal-Taixé · Liang-Chieh Chen -
2020 : Discussion Panel with Amanda Coston »
Amanda Coston · Elaine Nsoesie · Catherine Nakalembe · Santiago Saavedra · Xiaoxiang Zhu · Ernest Mwebaze -
2020 : Live QA with Xiaoxiang Zhu »
Xiaoxiang Zhu -
2020 : Invited Talk 2: Artificial Intelligence in Earth Observation for the Developing World »
Xiaoxiang Zhu -
2020 Poster: Make One-Shot Video Object Segmentation Efficient Again »
Tim Meinhardt · Laura Leal-Taixé -
2020 Poster: Deep Shells: Unsupervised Shape Correspondence with Optimal Transport »
Marvin Eisenberger · Aysim Toker · Laura Leal-Taixé · Daniel Cremers -
2018 : Spotlight talks (session 3) »
Farzaneh Mahdisoltani · Frederik Kratzert · SUBBAREDDY OOTA · Mehul Motani · Tryambak Gangopadhyay · Sathwik Tejaswi Madhusudhan · Marc Rußwurm · Mahta Mousavi · Mihir Jain -
2018 : Spotlight talks (session 2) »
Sophie Giffard-Roisin · Marc Rußwurm · Esra Suel · Binh Tang · Harshal Maske · Daniel Neill · Doyup Lee