Timezone: »
A Forster transform is an operation that turns a multivariate distribution into one with good anti-concentration properties. While a Forster transform does not always exist, we show that any distribution can be efficiently decomposed as a disjoint mixture of few distributions for which a Forster transform exists and can be computed efficiently. As the main application of this result, we obtain the first polynomial-time algorithm for distribution-independent PAC learning of halfspaces in the Massart noise model with strongly polynomial sample complexity, i.e., independent of the bit complexity of the examples. Previous algorithms for this learning problem incurred sample complexity scaling polynomially with the bit complexity, even though such a dependence is not information-theoretically necessary.
Author Information
Ilias Diakonikolas (UW Madison)
Daniel Kane (University of California, San Diego)
Christos Tzamos (UW-Madison)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Forster Decomposition and Learning Halfspaces with Noise »
Thu. Dec 9th 12:30 -- 02:00 AM Room
More from the Same Authors
-
2021 Spotlight: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2021 Spotlight: Statistical Query Lower Bounds for List-Decodable Linear Regression »
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas · Alistair Stewart -
2022 Poster: Linear Label Ranking with Bounded Noise »
Dimitris Fotakis · Alkis Kalavasis · Vasilis Kontonis · Christos Tzamos -
2022 Poster: Perfect Sampling from Pairwise Comparisons »
Dimitris Fotakis · Alkis Kalavasis · Christos Tzamos -
2021 Poster: ReLU Regression with Massart Noise »
Ilias Diakonikolas · Jong Ho Park · Christos Tzamos -
2021 Poster: Statistical Query Lower Bounds for List-Decodable Linear Regression »
Ilias Diakonikolas · Daniel Kane · Ankit Pensia · Thanasis Pittas · Alistair Stewart -
2021 Poster: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2020 Poster: List-Decodable Mean Estimation via Iterative Multi-Filtering »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard -
2020 Poster: Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals »
Ilias Diakonikolas · Daniel Kane · Nikos Zarifis -
2020 Poster: Non-Convex SGD Learns Halfspaces with Adversarial Label Noise »
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Nikos Zarifis -
2020 Poster: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2020 Poster: The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise »
Ilias Diakonikolas · Daniel M. Kane · Pasin Manurangsi -
2020 Poster: Outlier Robust Mean Estimation with Subgaussian Rates via Stability »
Ilias Diakonikolas · Daniel M. Kane · Ankit Pensia -
2020 Spotlight: Optimal Private Median Estimation under Minimal Distributional Assumptions »
Christos Tzamos · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Ilias Zadik -
2019 Poster: Private Testing of Distributions via Sample Permutations »
Maryam Aliakbarpour · Ilias Diakonikolas · Daniel Kane · Ronitt Rubinfeld -
2019 Poster: Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin »
Ilias Diakonikolas · Daniel Kane · Pasin Manurangsi -
2019 Poster: Distribution-Independent PAC Learning of Halfspaces with Massart Noise »
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Spotlight: Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin »
Ilias Diakonikolas · Daniel Kane · Pasin Manurangsi -
2019 Oral: Distribution-Independent PAC Learning of Halfspaces with Massart Noise »
Ilias Diakonikolas · Themis Gouleakis · Christos Tzamos -
2019 Poster: Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering »
Ilias Diakonikolas · Daniel Kane · Sushrut Karmalkar · Eric Price · Alistair Stewart -
2019 Poster: A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families »
Brian Axelrod · Ilias Diakonikolas · Alistair Stewart · Anastasios Sidiropoulos · Gregory Valiant