Timezone: »
We typically compute aggregate statistics on held-out test data to assess the generalization of machine learning models. However, test data is only so comprehensive, and in practice, important cases are often missed. Thus, the performance of deployed machine learning models can be variable and untrustworthy. Motivated by these concerns, we develop methods to generate and correct novel model errors beyond those available in the data. We propose Defuse: a technique that trains a generative model on a classifier’s training dataset and then uses the latent space to generate new samples which are no longer correctly predicted by the classifier. For instance, given a classifier trained on the MNIST dataset that correctly predicts a test image, Defuse then uses this image to generate new similar images by sampling from the latent space. Defuse then identifies the images that differ from the label of the original test input. Defuse enables efficient labeling of these new images, allowing users to re-train a more robust model, thus improving overall model performance. We evaluate the performance of Defuse on classifiers trained on real world datasets and find it reveals novel sources of model errors.
Author Information
Dylan Slack (UC Irvine)
Krishnaram Kenthapadi (Amazon)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : [S6] Defuse: Training More Robust Models through Creation and Correction of Novel Model Errors »
Tue. Dec 14th 05:06 -- 05:09 PM Room
More from the Same Authors
-
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2022 : TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2022 : Contributed Talk: TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations »
Dylan Slack · Satyapriya Krishna · Himabindu Lakkaraju · Sameer Singh -
2021 Poster: Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Anna Hilgard · Sameer Singh · Himabindu Lakkaraju -
2021 Poster: Counterfactual Explanations Can Be Manipulated »
Dylan Slack · Anna Hilgard · Himabindu Lakkaraju · Sameer Singh -
2020 Expo Talk Panel: Fairness, Explainability, and Privacy in AI/ML Systems »
Vidya Ravipati · Erika Pelaez Coyotl · Ujjwal Ratan · Krishnaram Kenthapadi -
2019 : Poster session »
Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey James · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Mengjiao (Sherry) Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu