Timezone: »
Despite their state-of-art performance, the lack of explainability impedes the deployment of deep learning in day-to-day clinical practice. We propose REM, an explainable methodology for extracting rules from deep neural networks and combining them with rules from non-deep learning models. This allows integrating machine learning and reasoning for investigating basic and applied biological research questions. We evaluate the utility of REM in two cancer case studies and demonstrate that it can efficiently extract accurate and comprehensible rulesets from neural networks that can be readily integrated with rulesets obtained from tree-based approaches. REM provides explanation facilities for predictions and enables the clinicians to validate and calibrate the extracted rulesets with their domain knowledge. With these functionalities, REM caters for a novel and direct human-in-the-loop approach in clinical decision-making.
Author Information
Zohreh Shams (University of Cambridge)
Botty Dimanov (University of Cambridge)
Nikola Simidjievski (University of Cambridge)
Helena Andres-Terre (University of Cambridge)
Paul Scherer (University of Cambridge)
Urška Matjašec (University of Cambridge)
Mateja Jamnik (University of Cambridge)
Pietro Lió (University of Cambridge)
More from the Same Authors
-
2021 : Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Approximate Latent Force Model Inference »
Jacob Moss · Felix Opolka · Pietro Lió -
2021 : [S12] Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : On Second Order Behaviour in Augmented Neural ODEs: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2020 Poster: Constraining Variational Inference with Geometric Jensen-Shannon Divergence »
Jacob Deasy · Nikola Simidjievski · Pietro Lió -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió