Timezone: »
Despite their state-of-art performance, the lack of explainability impedes the deployment of deep learning in day-to-day clinical practice. We propose REM, an explainable methodology for extracting rules from deep neural networks and combining them with rules from non-deep learning models. This allows integrating machine learning and reasoning for investigating basic and applied biological research questions. We evaluate the utility of REM in two cancer case studies and demonstrate that it can efficiently extract accurate and comprehensible rulesets from neural networks that can be readily integrated with rulesets obtained from tree-based approaches. REM provides explanation facilities for predictions and enables the clinicians to validate and calibrate the extracted rulesets with their domain knowledge. With these functionalities, REM caters for a novel and direct human-in-the-loop approach in clinical decision-making.
Author Information
Zohreh Shams (University of Cambridge)
Botty Dimanov (University of Cambridge)
Nikola Simidjievski (University of Cambridge)
Helena Andres-Terre (University of Cambridge)
Paul Scherer (University of Cambridge)
Urška Matjašec (University of Cambridge)
Mateja Jamnik (University of Cambridge)
Pietro Lió (University of Cambridge)
More from the Same Authors
-
2021 : Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : Approximate Latent Force Model Inference »
Jacob Moss · Felix Opolka · Pietro Lió -
2022 : Learning Feynman Diagrams using Graph Neural Networks »
Alexander Norcliffe · Harrison Mitchell · Pietro Lió -
2022 : A physics-informed search for metric solutions to Ricci flow, their embeddings, and visualisation »
Aarjav Jain · Challenger Mishra · Pietro Lió -
2022 : Improving Classification and Data Imputation for Single-Cell Transcriptomics with Graph Neural Networks »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs »
Albert Jiang · Sean Welleck · Jin Peng Zhou · Timothee Lacroix · Jiacheng Liu · Wenda Li · Mateja Jamnik · Guillaume Lample · Yuhuai Wu -
2022 : Structure-based Drug Design with Equivariant Diffusion Models »
Arne Schneuing · Yuanqi Du · Charles Harris · Arian Jamasb · Ilia Igashov · weitao Du · Tom Blundell · Pietro Lió · Carla Gomes · Max Welling · Michael Bronstein · Bruno Correia -
2022 : A Federated Learning benchmark for Drug-Target Interaction »
Filip Svoboda · Gianluca Mittone · Nicholas Lane · Pietro Lió -
2022 : Benchmarking Graph Neural Network-based Imputation Methods on Single-Cell Transcriptomics Data »
Han-Bo Li · Ramon Viñas Torné · Pietro Lió -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Human Interventions in Concept Graph Networks »
Lucie Charlotte Magister · Pietro Barbiero · Dmitry Kazhdan · Federico Siciliano · Gabriele Ciravegna · Fabrizio Silvestri · Mateja Jamnik · Pietro Lió -
2022 : Sheaf Attention Networks »
Federico Barbero · Cristian Bodnar · Haitz Sáez de Ocáriz Borde · Pietro Lió -
2022 : Dynamic outcomes-based clustering of disease progression in mechanically ventilated patients »
Emma Rocheteau · Ioana Bica · Pietro Lió · Ari Ercole -
2022 Poster: Autoformalization with Large Language Models »
Yuhuai Wu · Albert Q. Jiang · Wenda Li · Markus Rabe · Charles Staats · Mateja Jamnik · Christian Szegedy -
2022 Poster: Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off »
Mateo Espinosa Zarlenga · Pietro Barbiero · Gabriele Ciravegna · Giuseppe Marra · Francesco Giannini · Michelangelo Diligenti · Zohreh Shams · Frederic Precioso · Stefano Melacci · Adrian Weller · Pietro Lió · Mateja Jamnik -
2022 Poster: Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs »
Cristian Bodnar · Francesco Di Giovanni · Benjamin Chamberlain · Pietro Lió · Michael Bronstein -
2022 Poster: Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers »
Albert Q. Jiang · Wenda Li · Szymon Tworkowski · Konrad Czechowski · Tomasz Odrzygóźdź · Piotr Miłoś · Yuhuai Wu · Mateja Jamnik -
2022 Poster: Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 Poster: Composite Feature Selection Using Deep Ensembles »
Fergus Imrie · Alexander Norcliffe · Pietro Lió · Mihaela van der Schaar -
2022 Poster: SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks »
Davide Buffelli · Pietro Lió · Fabio Vandin -
2021 : [S12] Efficient Decompositional Rule Extraction for Deep Neural Networks »
Mateo Espinosa Zarlenga · Mateja Jamnik -
2021 : Neural ODE Processes: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Jacob Moss · Pietro Lió -
2021 : On Second Order Behaviour in Augmented Neural ODEs: A Short Summary »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió -
2021 : Structure-aware generation of drug-like molecules »
Pavol Drotar · Arian Jamasb · Ben Day · Catalina Cangea · Pietro Lió -
2020 Poster: Constraining Variational Inference with Geometric Jensen-Shannon Divergence »
Jacob Deasy · Nikola Simidjievski · Pietro Lió -
2020 Poster: On Second Order Behaviour in Augmented Neural ODEs »
Alexander Norcliffe · Cristian Bodnar · Ben Day · Nikola Simidjievski · Pietro Lió