Timezone: »
Robust Interpretable Rule Learning to Identify Expertise Transfer Opportunities in Healthcare
Willa Potosnak · Sebastian Caldas Rivera · Gilles Clermont · Kyle Miller · Artur Dubrawski
Differences in clinical outcomes and costs within and between healthcare sites are a result of varying patient populations. We aim to pragmatically leverage this population heterogeneity and identify opportunities for beneficial transfer of knowledge across healthcare sites. We propose an algorithmic approach that is robust to sampling variance and yields reliable and human-interpretable insights into knowledge transfer opportunities. Our experimental results, obtained with two intensive care monitoring datasets, demonstrate the potential utility of the proposed method in clinical practice.
Author Information
Willa Potosnak (Carnegie Mellon University)
Sebastian Caldas Rivera (Carnegie Mellon University)
Gilles Clermont (University of Pittsburgh)
Kyle Miller (Carnegie Mellon University)
Artur Dubrawski (Carnegie Mellon University)
More from the Same Authors
-
2021 : Predicting Sufficiency for Hemorrhage Resuscitation Using Non-invasive Physiological Data without Reference to Personal Baselines »
Xinyu Li · Michael Pinsky · Artur Dubrawski -
2023 Poster: Feature Learning for Interpretable, Performant Decision Trees »
Jack Good · Torin Kovach · Kyle Miller · Artur Dubrawski -
2020 : ML4D Townhall »
Artur Dubrawski -
2020 Session: Orals & Spotlights Track 33: Health/AutoML/(Soft|Hard)ware »
Dustin Tran · Artur Dubrawski -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 Poster: Mutually Regressive Point Processes »
Ifigeneia Apostolopoulou · Scott Linderman · Kyle Miller · Artur Dubrawski -
2018 : Introductory remarks »
Artur Dubrawski -
2017 : Introductory remarks »
Artur Dubrawski -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2015 Demonstration: An interactive system for the extraction of meaningful visualizations from high-dimensional data »
Madalina Fiterau · Artur Dubrawski · Donghan Wang -
2012 Poster: Projection Retrieval for Classification »
Madalina Fiterau · Artur Dubrawski -
2008 Poster: Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text »
Yi Zhang · Jeff Schneider · Artur Dubrawski