Timezone: »
The availability of large amounts of user-provided data has been key to the success of machine learning for many real-world tasks. Recently, an increasing awareness has emerged that users should be given more control about how their data is used. In particular, users should have the right to prohibit the use of their data for training machine learning systems, and to have it erased from already trained systems. While several sample erasure methods have been proposed, all of them have drawbacks which have prevented them from gaining widespread adoption. In this paper, we propose an efficient and effective algorithm, SSSE, for samples erasure that is applicable to a wide class of machine learning models. From a second-order analysis of the model's loss landscape we derive a closed-form update step of the model parameters that only requires access to the data to be erased, not to the original training set. Experiments on CelebFaces attributes (CelebA) and CIFAR10, show that in certain cases SSSE can erase samples almost as well as the optimal, yet impractical, gold standard of training a new model from scratch with only the permitted data.
Author Information
Alexandra Peste (IST Austria)
Dan Alistarh (IST Austria & NeuralMagic)
Christoph Lampert (IST Austria)
More from the Same Authors
-
2021 : Poster: On the Impossibility of Fairness-Aware Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2022 Poster: Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning »
Elias Frantar · Dan Alistarh -
2022 Poster: Fairness-Aware PAC Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2021 : On the Impossibility of Fairness-Aware Learning from Corrupted Data »
Nikola Konstantinov · Christoph Lampert -
2021 Poster: M-FAC: Efficient Matrix-Free Approximations of Second-Order Information »
Elias Frantar · Eldar Kurtic · Dan Alistarh -
2021 Poster: Distributed Principal Component Analysis with Limited Communication »
Foivos Alimisis · Peter Davies · Bart Vandereycken · Dan Alistarh -
2021 Poster: Towards Tight Communication Lower Bounds for Distributed Optimisation »
Janne H. Korhonen · Dan Alistarh -
2021 Poster: Asynchronous Decentralized SGD with Quantized and Local Updates »
Giorgi Nadiradze · Amirmojtaba Sabour · Peter Davies · Shigang Li · Dan Alistarh -
2021 Poster: AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks »
Alexandra Peste · Eugenia Iofinova · Adrian Vladu · Dan Alistarh -
2020 Poster: Unsupervised object-centric video generation and decomposition in 3D »
Paul Henderson · Christoph Lampert -
2019 Poster: Powerset Convolutional Neural Networks »
Chris Wendler · Markus Püschel · Dan Alistarh -
2017 Workshop: Learning with Limited Labeled Data: Weak Supervision and Beyond »
Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2015 Workshop: Transfer and Multi-Task Learning: Trends and New Perspectives »
Anastasia Pentina · Christoph Lampert · Sinno Jialin Pan · Mingsheng Long · Judy Hoffman · Baochen Sun · Kate Saenko -
2015 Poster: Lifelong Learning with Non-i.i.d. Tasks »
Anastasia Pentina · Christoph Lampert -
2014 Poster: Mind the Nuisance: Gaussian Process Classification using Privileged Noise »
Daniel Hernández-lobato · Viktoriia Sharmanska · Kristian Kersting · Christoph Lampert · Novi Quadrianto -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2012 Poster: Dynamic Pruning of Factor Graphs for Maximum Marginal Prediction »
Christoph Lampert -
2011 Poster: Maximum Margin Multi-Label Structured Prediction »
Christoph Lampert