`

Timezone: »

 
Basil: A Fast and Byzantine-Resilient Approach for Decentralized Training
Ahmed Elkordy · Saurav Prakash · Salman Avestimehr
Event URL: https://openreview.net/forum?id=_vj5wbUcgRB »
Decentralized (i.e., serverless) learning across a large number of distributed nodes (e.g., mobile users) has seen a surge of recent interests. The key advantage of these setups is that they provide privacy for the local data of the users while not requiring a server for coordinating the training. They can, however, suffer substantially from potential Byzantine nodes in the network who can degrade the training performance. Detection and mitigation of Byzantine behaviors in a decentralized learning setting is a daunting task, especially when the data distribution at the users is heterogeneous. As our main contribution, we propose \texttt{Basil}, a fast and computationally efficient Byzantine robust algorithm for decentralized training systems, which leverages a novel sequential, memory assisted and performance based criteria for training over a logical ring while filtering the Byzantine users. In the IID dataset distribution setting, we provide the theoretical convergence guarantees of \texttt{Basil}, demonstrating its linear convergence rate. Furthermore, for the IID setting, we experimentally demonstrate that \texttt{Basil} is robust to various Byzantine attacks, including the strong Hidden attack, while providing up to ${\sim}16 \%$ higher test accuracy over the state-of-the-art Byzantine-resilient decentralized learning approach. Additionally, we generalize \texttt{Basil} to the non-IID dataset distribution setting by proposing Anonymous Cyclic Data Sharing (ACDS), a technique that allows each node to anonymously share a random fraction of its local non-sensitive dataset (e.g., landmarks images) with all other nodes. We demonstrate that \texttt{Basil} alongside ACDS with only $5\%$ data sharing provides effective toleration of Byzantine nodes, unlike the state-of-the-art Byzantine robust algorithm that completely fails in the heterogeneous data setting.

Author Information

Ahmed Elkordy (University of Southern California)
Saurav Prakash (University of Southern California)
Salman Avestimehr (USC)

More from the Same Authors