Timezone: »
Affect recognition depends on interpreting both expressions and their associated context. While expressions can be explicitly measured with sensor technologies, the role of context is more difficult to measure because context is often left undefined. In an effort to explicitly incorporate pragmatics in automated affect recognition, we develop a framework for categorizing context. Building upon ontologies in affective science and symbolic artificial intelligence, we highlight seven key categories: ambient sensory environment, methods of measurement, semantic representation, situational constraints, temporal dynamics, sociocultural dimensions, and personalization. In this short paper, we focus on how the epistemological categories of context influence the training and evaluation of machine learning models for affect recognition. Incorporating context in the practical and theoretical development of affect recognition models is an important step to developing more precise and accurate models.
Author Information
Matt Groh (MIT)
Rosalind Picard (MIT Media Lab)
More from the Same Authors
-
2022 : Identifying the Context Shift between Test Benchmarks and Production Data »
Matt Groh -
2022 : Identifying the Context Shift between Test Benchmarks and Production Data »
Matt Groh -
2022 : Rosalind Picard »
Rosalind Picard -
2022 : Contrastive Learning of Electrodermal Activity Representations for Stress Detection »
Katie Matton · Robert Lewis · John Guttag · Rosalind Picard -
2022 : Improving dermatology classifiers across populations using images generated by large diffusion models »
Luke Sagers · James Diao · Matt Groh · Pranav Rajpurkar · Adewole Adamson · Arjun Manrai -
2019 Poster: Approximating Interactive Human Evaluation with Self-Play for Open-Domain Dialog Systems »
Asma Ghandeharioun · Judy Hanwen Shen · Natasha Jaques · Craig Ferguson · Noah Jones · Agata Lapedriza · Rosalind Picard -
2018 : Lunch »
Hong Yu · Bhanu Pratap Singh Rawat · Arijit Ukil · Waheeda Saib · Jekaterina Novikova · John Hughes · Yuhui Zhang · Rahul V · Mi Jung Kim · Babak Taati · Hariharan Ravishankar · Harry Clifford · Hirofumi Kobayashi · Babak Taati · Keyang Xu · Yen-Chi Cheng · Timothy Cannings · Jayashree Kalpathy-Cramer · Jayashree Kalpathy-Cramer · Parinaz Sobhani · Kimis Perros · Wei-Hung Weng · Yordan Raykov · Lars Lorch · Mengqi Jin · Xue Teng · Michael Ferlaino · Marek Rei · Cédric Beaulac · Aman Verma · Sebastian Keller · Edmond Cunningham · Luc Evers · Victor Rodriguez · Vipul Satone · Dianbo Liu · Angeline Yasodhara · Geoff Tison · Ligin Solamen · Bryan He · Rahul Ladhania · Yipeng Shi · Md Nafiz Hamid · Pouria Mashouri · Woochan Hwang · Sejin Park · Xu Chen · Rachneet Kaur · Davis Blalock · Holly Wiberg · Parminder Bhatia · Kezi Yu · RUMENG LI · Jun Sakuma · Charles Ding · Aaron Babier · Yong Cai · A Pratap · Luke O'Connor · Allen Nie · Martin Kang · Ian Covert · Xun Wang · Zelun Luo · Serena Yeung · William Boag · Kazuki Tachikawa · Mary Saltz · Owen Lahav · Edward Lee · Eric Teasley · Michael Kamp · Nirmesh Patel · Vishwali Mhasawade · Maxim Samarin · Ryo Uchimido · Farzad Khalvati · Francisco Cruz · Laura Symul · Zaid Nabulsi · Mads Mihailescu · Rosalind Picard -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch