Timezone: »
Recent attempts at image steganography make use of advances in deep learning to train an encoder-decoder network pair to hide and retrieve secret messages in images. These methods are able to hide large amounts of data, but also incur high decoding error rates (around 20\%). We propose a novel algorithm for steganography that takes advantage of the fact that neural networks are sensitive to tiny perturbations. Our method, Fixed Neural Network Steganography (FNNS), achieves 0\% error reliably for hiding up to 3 bits per pixel (bpp) of secret information in images and yields significantly lower error rates when compared to prior state of the art methods for hiding more than 3 bpp. FNNS also successfully evades existing statistical steganalysis systems and can be modified to evade neural steganalysis systems as well. Recovering every bit correctly, up to 3 bpp, enables novel applications, e.g. those requiring encryption. We introduce one specific use case for facilitating anonymized and safe image sharing.
Author Information
Varsha Kishore (Cornell University)
Xiangyu Chen (Cornell University)
Yan Wang (Cornell)
Boyi Li (Cornell University)
Kilian Weinberger (Cornell University / ASAPP Research)
More from the Same Authors
-
2023 Poster: Teaching Cars to See in a Day: Unsupervised Object Discovery with Reward Fine-tuning »
Katie Luo · Zhenzhen Liu · Xiangyu Chen · Yurong You · Sagie Benaim · Cheng Perng Phoo · Mark Campbell · Wen Sun · Bharath Hariharan · Kilian Weinberger -
2023 Poster: Latent Diffusion for Language Generation »
Justin Lovelace · Varsha Kishore · Chao Wan · Eliot Shekhtman · Kilian Weinberger -
2023 Poster: DriveMax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research »
Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp -
2022 Workshop: INTERPOLATE — First Workshop on Interpolation Regularizers and Beyond »
Yann Dauphin · David Lopez-Paz · Vikas Verma · Boyi Li -
2022 Poster: Unsupervised Adaptation from Repeated Traversals for Autonomous Driving »
Yurong You · Cheng Perng Phoo · Katie Luo · Travis Zhang · Wei-Lun Chao · Bharath Hariharan · Mark Campbell · Kilian Weinberger -
2021 Affinity Workshop: WiML Workshop 4 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Affinity Workshop: WiML Workshop 3 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 Affinity Workshop: WiML Workshop 2 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2021 : WiML Opening remarks »
Boyi Li · Mariya Vasileva -
2021 Affinity Workshop: WiML Workshop 1 »
Soomin Aga Lee · Meera Desai · Nezihe Merve Gürel · Boyi Li · Linh Tran · Akiko Eriguchi · Jieyu Zhao · Salomey Osei · Sirisha Rambhatla · Geeticka Chauhan · Nwamaka (Amaka) Okafor · Mariya Vasileva -
2020 : Panel »
Kilian Weinberger · Maria De-Arteaga · Shibani Santurkar · Jonathan Frankle · Deborah Raji -
2020 : Q&A with Kilian »
Kilian Weinberger -
2020 : Invited: Kilian Weinberger »
Kilian Weinberger -
2020 Poster: Identifying Mislabeled Data using the Area Under the Margin Ranking »
Geoff Pleiss · Tianyi Zhang · Ethan Elenberg · Kilian Weinberger -
2020 Poster: Wasserstein Distances for Stereo Disparity Estimation »
Divyansh Garg · Yan Wang · Bharath Hariharan · Mark Campbell · Kilian Weinberger · Wei-Lun Chao -
2020 Spotlight: Wasserstein Distances for Stereo Disparity Estimation »
Divyansh Garg · Yan Wang · Bharath Hariharan · Mark Campbell · Kilian Weinberger · Wei-Lun Chao -
2019 Poster: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Spotlight: Positional Normalization »
Boyi Li · Felix Wu · Kilian Weinberger · Serge Belongie -
2019 Poster: Exact Gaussian Processes on a Million Data Points »
Ke Alexander Wang · Geoff Pleiss · Jacob Gardner · Stephen Tyree · Kilian Weinberger · Andrew Gordon Wilson -
2019 Poster: A New Defense Against Adversarial Images: Turning a Weakness into a Strength »
Shengyuan Hu · Tao Yu · Chuan Guo · Wei-Lun Chao · Kilian Weinberger -
2018 Poster: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2018 Spotlight: GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration »
Jacob Gardner · Geoff Pleiss · Kilian Weinberger · David Bindel · Andrew Wilson -
2017 Poster: On Fairness and Calibration »
Geoff Pleiss · Manish Raghavan · Felix Wu · Jon Kleinberg · Kilian Weinberger -
2016 Poster: Supervised Word Mover's Distance »
Gao Huang · Chuan Guo · Matt J Kusner · Yu Sun · Fei Sha · Kilian Weinberger -
2016 Oral: Supervised Word Mover's Distance »
Gao Huang · Chuan Guo · Matt J Kusner · Yu Sun · Fei Sha · Kilian Weinberger -
2015 : Deep Manifold Traversal »
Kilian Weinberger -
2015 Poster: Fast Distributed k-Center Clustering with Outliers on Massive Data »
Gustavo Malkomes · Matt J Kusner · Wenlin Chen · Kilian Q Weinberger · Benjamin Moseley -
2015 Poster: Bayesian Active Model Selection with an Application to Automated Audiometry »
Jacob Gardner · Gustavo Malkomes · Roman Garnett · Kilian Weinberger · Dennis Barbour · John Cunningham -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2012 Poster: Non-linear Metric Learning »
Dor Kedem · Stephen Tyree · Kilian Q Weinberger · Fei Sha · Gert Lanckriet -
2011 Workshop: Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity »
Greg Shakhnarovich · Dhruv Batra · Brian Kulis · Kilian Q Weinberger -
2011 Poster: Co-Training for Domain Adaptation »
Minmin Chen · Kilian Q Weinberger · John Blitzer -
2010 Session: Oral Session 16 »
Kilian Q Weinberger -
2010 Poster: Large Margin Multi-Task Metric Learning »
Shibin Parameswaran · Kilian Q Weinberger -
2010 Poster: Decoding Ipsilateral Finger Movements from ECoG Signals in Humans »
Yuzong Liu · Mohit Sharma · Charles M Gaona · Jonathan D Breshears · jarod Roland · zachary V Freudenburg · Kilian Q Weinberger · Eric C Leuthardt -
2008 Poster: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2008 Spotlight: Large Margin Taxonomy Embedding for Document Categorization »
Kilian Q Weinberger · Olivier Chapelle -
2006 Workshop: Novel Applications of Dimensionality Reduction »
John Blitzer · Rajarshi Das · Irina Rish · Kilian Q Weinberger -
2006 Poster: Graph Regularization for Maximum Variance Unfolding with an Application to Sensor Localization »
Kilian Q Weinberger · Fei Sha · Qihui Zhu · Lawrence Saul