Timezone: »
Restricted isometry property (RIP), essentially stating that the linear measurements are approximately norm-preserving, plays a crucial role in studying low-rank matrix recovery problem. However, RIP fails in the robust setting, when a subset of the measurements are grossly corrupted with noise. In this work, we propose a robust restricted isometry property, called Sign-RIP, and show its broad applications in robust low-rank matrix recovery. In particular, we show that Sign-RIP can guarantee the uniform convergence of the subdifferentials of the robust matrix recovery with nonsmooth loss function, even at the presence of arbitrarily dense and arbitrarily large outliers. Based on Sign-RIP, we characterize the location of the critical points in the robust rank-1 matrix recovery, and prove that they are either close to the true solution, or have small norm. Moreover, in the over-parameterized regime, where the rank of the true solution is over-estimated, we show that subgradient method converges to the true solution at a (nearly) dimension-free rate. We show that the new notion of sign-RIP enjoys almost the same sample complexity as its classical counterparts, but provides significantly better robustness against noise.
Author Information
Jianhao Ma (University of Michigan)
Salar Fattahi (University of Michigan)
More from the Same Authors
-
2022 Spotlight: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2022 Spotlight: Lightning Talks 2A-1 »
Caio Kalil Lauand · Ryan Strauss · Yasong Feng · lingyu gu · Alireza Fathollah Pour · Oren Mangoubi · Jianhao Ma · Binghui Li · Hassan Ashtiani · Yongqi Du · Salar Fattahi · Sean Meyn · Jikai Jin · Nisheeth Vishnoi · zengfeng Huang · Junier B Oliva · yuan zhang · Han Zhong · Tianyu Wang · John Hopcroft · Di Xie · Shiliang Pu · Liwei Wang · Robert Qiu · Zhenyu Liao -
2022 Poster: Blessing of Depth in Linear Regression: Deeper Models Have Flatter Landscape Around the True Solution »
Jianhao Ma · Salar Fattahi -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 Poster: Scalable Inference of Sparsely-changing Gaussian Markov Random Fields »
Salar Fattahi · Andres Gomez -
2021 Poster: Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization »
Jialun Zhang · Salar Fattahi · Richard Y Zhang