Timezone: »
Multi-agent market simulation is commonly used for testing trading strategies before deploying them to real-time trading. In electronic trading markets only the price or volume time series, that result from interaction of multiple market participants, are typically directly observable. Therefore, multi-agent market environments need to be calibrated so that the time series that result from interaction of simulated agents resemble historical -- which amounts to solving a highly complex large-scale optimization problem. In this paper, we propose a simple and efficient framework for calibrating multi-agent market simulator parameters from historical time series observations. First, we consider a novel concept of eligibility set to bypass the potential non-identifiability issue. Second, we generalize the two-sample Kolmogorov-Smirnov (K-S) test with Bonferroni correction to test the similarity between two high-dimensional time series distributions, which gives a simple yet effective distance metric between the time series sample sets. Third, we suggest using Bayesian optimization (BO) and trust-region BO (TuRBO) to minimize the aforementioned distance metric. Finally, we demonstrate the efficiency of our framework using numerical experiments.
Author Information
Yuanlu Bai (Columbia University)
Svitlana Vyetrenko (J. P. Morgan, Artificial Intelligence Research)
Henry Lam (Columbia University)
Tucker Balch (J.P. Morgan AI Research)
More from the Same Authors
-
2022 : Conditional Demographic Parity Through Optimal Transport »
Luhao Zhang · Mohsen Ghassemi · Ivan Brugere · Niccolo Dalmasso · Alan Mishler · Vamsi Potluru · Tucker Balch · Manuela Veloso -
2022 : A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift »
Defu Cao · Yousef El-Laham · Loc Trinh · Svitlana Vyetrenko · Yan Liu -
2022 : Few-Shot Learnable Augmentation for Financial Time Series Prediction under Distribution Shifts »
Dat Huynh · Elizabeth Fons · Svitlana Vyetrenko -
2022 : Achievements and Challenges Part 2/2 »
Zhaozhi Qian · Tucker Balch · Sergul Aydore -
2022 : HyperTime: Implicit Neural Representations for Time Series »
Elizabeth Fons · Alejandro Sztrajman · Yousef El-Laham · Alexandros Iosifidis · Svitlana Vyetrenko -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher