`

Timezone: »

 
Spectral PINNs: Fast Uncertainty Propagation with Physics-Informed Neural Networks
Björn Lütjens · Mark Veillette · Dava Newman

Tue Dec 14 11:30 AM -- 12:15 PM (PST) @
Event URL: https://openreview.net/forum?id=218sl_mPChc »

Physics-informed neural networks (PINNs) promise to significantly speed up partial differential equation (PDE) solvers. However, most PINNs can only solve deterministic PDEs. Here, we consider \textit{stochastic} PDEs that contain partially unknown parameters. We aim to quickly quantify the impact of uncertain parameters onto the solution of a PDE - that is - we want to perform fast uncertainty propagation. Classical uncertainty propagation methods such as Monte Carlo sampling, stochastic Galerkin, collocation, or discrete projection methods become computationally too expensive with an increasing number of stochastic parameters. For example, the well-known spectral or polynomial chaos expansions achieve to separate the spatiotemporal and probabilistic domains and offer theoretical guarantees and fast computation of stochastic summaries (e.g., mean), but can be computationally expensive to form. Our Spectral-PINNs approximate the underlying spectral coefficients with a neural network and reduce the computational cost of the spectral expansion while maintaining guarantees. We derive the method for partial differential equations, discuss runtime, demonstrate initial results on the convection-diffusion equation, and provide steps towards convergence guarantees.

Author Information

Björn Lütjens (Massachusetts Institute of Technology)
Mark Veillette (MIT Lincoln Laboratory)
Dava Newman (MIT)

More from the Same Authors

  • 2021 : WiSoSuper: Benchmarking Super-Resolution Methods on Wind and Solar Data »
    Rupa Kurinchi-Vendhan · Björn Lütjens · Lucien Werner · Steven Low
  • 2021 : Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark »
    Alexandre Lacoste · Evan Sherwin · Hannah Kerner · Hamed Alemohammad · Björn Lütjens · Jeremy Irvin · David Dao · Alex Chang · Mehmet Gunturkun · Alexandre Drouin · Pau Rodriguez · David Vazquez
  • 2021 : Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators »
    Peishi Jiang · Constantin Weisser · Björn Lütjens · Dava Newman
  • 2020 : Climate Change and ML for Policy »
    Angel Hsu · Dava Newman · James Rattling Leaf, Sr. · Mouhamadou M Cisse
  • 2020 Poster: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology »
    Mark Veillette · Siddharth Samsi · Chris Mattioli
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans