Timezone: »
Recently, physics-informed neural networks (PINNs) have offered a powerful new paradigm for solving forward and inverse problems relating to differential equations. Whilst promising, a key limitation to date is that PINNs struggle to accurately solve problems with large domains and/or multi-scale solutions, which is crucial for their real-world application. In this work we propose a new approach called finite basis physics-informed neural networks (FBPINNs). FBPINNs combine PINNs with domain decomposition and separate subdomain normalisation to address the issues related to scaling PINNs to large domains, namely the increasing complexity of the underlying optimisation problem and the spectral bias of neural networks. Our experiments show that FBPINNs are more effective than PINNs in solving problems with large domains and/or multi-scale solutions, potentially paving the way to the application of PINNs on large, real-world problems.
Author Information
Ben Moseley (University of Oxford)
Andrew Markham (University of Oxford)
More from the Same Authors
-
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Freddie Kalaitzis -
2021 : Single Image Super-Resolution with Uncertainty Estimation for Lunar Satellite Images »
Jose Delgado-Centeno · Paula Harder · Ben Moseley · Valentin Bickel · Siddha Ganju · Miguel Olivares · Alfredo Kalaitzis -
2022 : Thermophysical Change Detection on the Moon with the Lunar Reconnaissance Orbiter Diviner sensor »
Jose Delgado-Centeno · Silvia Bucci · Ziyi Liang · Ben Gaffinet · Valentin T. Bickel · Ben Moseley · Miguel Olivares -
2023 Poster: DynPoint: Dynamic Neural Point For View Synthesis »
Kaichen Zhou · Andrew Markham · Yiyuan Yang · Kai Lu · Sangyun Shin · Jia-Xing Zhong · Niki Trigoni -
2023 Poster: Multi-body SE(3) Equivariance for Unsupervised Rigid Segmentation and Motion Estimation »
Jia-Xing Zhong · Ta-Ying Cheng · Yuhang He · Kai Lu · Kaichen Zhou · Andrew Markham · Niki Trigoni -
2019 Poster: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds »
Bo Yang · Jianan Wang · Ronald Clark · Qingyong Hu · Sen Wang · Andrew Markham · Niki Trigoni -
2019 Spotlight: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds »
Bo Yang · Jianan Wang · Ronald Clark · Qingyong Hu · Sen Wang · Andrew Markham · Niki Trigoni