Timezone: »
Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 40.8% on average and allows for fast planning in time-critical robotics domains.
Author Information
Michal Pándy (University of Cambridge)
Rex Ying (Stanford University)
Gabriele Corso (MIT)
Petar Veličković (DeepMind / University of Cambridge)
Jure Leskovec (Stanford University)
Pietro Liò (University of Cambridge)
More from the Same Authors
-
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Molecular Docking with Diffusion Generative Models »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Graph Neural Networks with Adaptive Readouts »
David Buterez · Jon Paul Janet · Steven J Kiddle · Dino Oglic · Pietro Liò -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking »
Gabriele Corso · Hannes Stärk · Bowen Jing · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Torsional Diffusion for Molecular Conformer Generation »
Bowen Jing · Gabriele Corso · Jeffrey Chang · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Graph Neural Networks with Adaptive Readouts »
David Buterez · Jon Paul Janet · Steven J Kiddle · Dino Oglic · Pietro Liò -
2021 : AI X Mathematics »
Petar Veličković -
2021 Poster: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Distance Embeddings for Biological Sequences »
Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò -
2021 Poster: Weisfeiler and Lehman Go Cellular: CW Networks »
Cristian Bodnar · Fabrizio Frasca · Nina Otter · Yuguang Wang · Pietro Liò · Guido Montufar · Michael Bronstein -
2020 : Invited Talk (Petar Veličković) »
Petar Veličković -
2020 : Contributed Talk 4: Directional Graph Networks »
Dominique Beaini · Saro Passaro · Vincent Létourneau · Will Hamilton · Gabriele Corso · Pietro Liò -
2020 Poster: Principal Neighbourhood Aggregation for Graph Nets »
Gabriele Corso · Luca Cavalleri · Dominique Beaini · Pietro Liò · Petar Veličković -
2020 Poster: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2020 Spotlight: Pointer Graph Networks »
Petar Veličković · Lars Buesing · Matthew Overlan · Razvan Pascanu · Oriol Vinyals · Charles Blundell -
2019 : Poster Session #2 »
Yunzhu Li · Peter Meltzer · Jianing Sun · Guillaume SALHA · Marin Vlastelica Pogančić · Chia-Cheng Liu · Fabrizio Frasca · Marc-Alexandre Côté · Vikas Verma · Abdulkadir CELIKKANAT · Pierluca D'Oro · Priyesh Vijayan · Maria Schuld · Petar Veličković · Kshitij Tayal · Yulong Pei · Hao Xu · Lei Chen · Pengyu Cheng · Ines Chami · Dongkwan Kim · Guilherme Gomes · Lukasz Maziarka · Jessica Hoffmann · Ron Levie · Antonia Gogoglou · Shunwang Gong · Federico Monti · Wenlin Wang · Yan Leng · Salvatore Vivona · Daniel Flam-Shepherd · Chester Holtz · Li Zhang · MAHMOUD KHADEMI · I-Chung Hsieh · Aleksandar Stanić · Ziqiao Meng · Yuhang Jiao -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković