Timezone: »
Although machine learning (ML) has been successful in automating various software engineering needs, software testing still remains a highly challenging topic. In this paper, we aim to improve the generative testing of software by directly augmenting the random number generator (RNG) with a deep reinforcement learning (RL) agent using an efficient, automatically extractable state representation of the software under test. Using the Cosmos SDK as the testbed, we show that the proposed DeepRNG framework provides a statistically significant improvement to the testing of the highly complex software library with over 350,000 lines of code. The source code of the DeepRNG framework is publicly available online.
Author Information
Chuan-Yung Tsai (Vector Institute)
Graham Taylor (University of Guelph / Vector Institute)
More from the Same Authors
-
2020 : Building LEGO using Deep Generative Models of Graphs »
Rylee Thompson · Graham Taylor · Terrance DeVries · Elahe Ghalebi -
2021 : An Empirical Study of Neural Kernel Bandits »
Michal Lisicki · Arash Afkanpour · Graham Taylor -
2023 Poster: A Step Towards Worldwide Biodiversity Assessment: The BIOSCAN-1M Insect Dataset »
Zahra Gharaee · ZeMing Gong · Nicholas Pellegrino · Iuliia Zarubiieva · Joakim Bruslund Haurum · Scott Lowe · Jaclyn McKeown · Chris Ho · Joschka McLeod · Yi-Yun Wei · Jireh Agda · Sujeevan Ratnasingham · Dirk Steinke · Angel Chang · Graham Taylor · Paul Fieguth -
2021 : Neural Structure Mapping For Learning Abstract Visual Analogies »
Shashank Shekhar · Graham Taylor -
2021 Poster: Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning »
Hyunsoo Chung · Jungtaek Kim · Boris Knyazev · Jinhwi Lee · Graham Taylor · Jaesik Park · Minsu Cho -
2021 Poster: Parameter Prediction for Unseen Deep Architectures »
Boris Knyazev · Michal Drozdzal · Graham Taylor · Adriana Romero Soriano -
2020 Poster: Instance Selection for GANs »
Terrance DeVries · Michal Drozdzal · Graham Taylor -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 Poster: Understanding Attention and Generalization in Graph Neural Networks »
Boris Knyazev · Graham Taylor · Mohamed Amer -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2016 Poster: Tensor Switching Networks »
Chuan-Yung Tsai · Andrew M Saxe · David Cox -
2015 : Learning Multi-scale Temporal Dynamics with Recurrent Neural Networks »
Graham Taylor -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis