Timezone: »
Successful applications of deep reinforcement learning (deep RL) combine algorithmic design and careful hyper-parameter selection. The former often comes from iterative improvements over existing algorithms, while the latter is either inherited from prior methods or tuned for the specific method being introduced. Although critical to a method’s performance, the effect of the various hyper-parameter choices are often overlooked in favour of algorithmic advances. In this paper, we perform an initial empirical investigation into a number of often-overlooked hyper-parameters for value-based deep RL agents, demonstrating their varying levels of importance. We conduct this study on a varied set of classic control environments which helps highlight the effect each environment has on an algorithm’s hyper-parameter sensitivity.
Author Information
João Madeira Araújo (University of São Paulo)
Johan Obando Ceron (Université de Montréal)
Pablo Samuel Castro (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 : Lifting the veil on hyper-parameters for value-baseddeep reinforcement learning »
Dates n/a. Room
More from the Same Authors
-
2020 : GANterpretations »
Pablo Samuel Castro -
2020 : Revisiting Rainbow: Promoting more insightful and inclusive deep reinforcement learning research »
Johan Obando Ceron -
2021 : Lifting the veil on hyper-parameters for value-baseddeep reinforcement learning »
João Madeira Araújo · Johan Obando Ceron · Pablo Samuel Castro -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Variance Double-Down: The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning »
Johan Obando Ceron · Marc Bellemare · Pablo Samuel Castro -
2022 : Panel RL Benchmarks »
Minmin Chen · Pablo Samuel Castro · Caglar Gulcehre · Tony Jebara · Peter Stone -
2022 Workshop: Broadening Research Collaborations »
Sara Hooker · Rosanne Liu · Pablo Samuel Castro · FatemehSadat Mireshghallah · Sunipa Dev · Benjamin Rosman · João Madeira Araújo · Savannah Thais · Sara Hooker · Sunny Sanyal · Tejumade Afonja · Swapneel Mehta · Tyler Zhu -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Invited Talk: Pablo Castro (Google Brain) on Estimating Policy Functions in Payment Systems using Reinforcement Learning »
Pablo Samuel Castro -
2021 Workshop: Ecological Theory of Reinforcement Learning: How Does Task Design Influence Agent Learning? »
Manfred Díaz · Hiroki Furuta · Elise van der Pol · Lisa Lee · Shixiang (Shane) Gu · Pablo Samuel Castro · Simon Du · Marc Bellemare · Sergey Levine -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 : Q&A Oral presentations »
Matias Valdenegro-Toro · Andres Munoz Medina · Johan Obando Ceron · Anil Batra -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: The Difficulty of Passive Learning in Deep Reinforcement Learning »
Georg Ostrovski · Pablo Samuel Castro · Will Dabney -
2021 Poster: MICo: Improved representations via sampling-based state similarity for Markov decision processes »
Pablo Samuel Castro · Tyler Kastner · Prakash Panangaden · Mark Rowland -
2020 : Contributed Talk #3: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning »
Rishabh Agarwal · Marlos C. Machado · Pablo Samuel Castro · Marc Bellemare -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle