Timezone: »
Boosting worst-group accuracy without group annotations
Vincent Bardenhagen · Alexandru Tifrea · Fanny Yang
Event URL: https://openreview.net/forum?id=-D8l1ifCHYi »
Despite having good average test accuracy, classification models can have poor performance on subpopulations that are not well represented in the training set. In this work we introduce a method to improve prediction accuracy on underrepresented groups that does not require any group labels for training or validation, unlike existing approaches. We provide a sound empirical investigation of our procedure and show that it recovers the worst-group performance of methods that use oracle group annotations.
Author Information
Vincent Bardenhagen (Swiss Federal Institute of Technology)
Alexandru Tifrea (Swiss Federal Institute of Technology)
Fanny Yang (ETH Zurich)
More from the Same Authors
-
2021 Poster: Interpolation can hurt robust generalization even when there is no noise »
Konstantin Donhauser · Alexandru Tifrea · Michael Aerni · Reinhard Heckel · Fanny Yang -
2017 Poster: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Early stopping for kernel boosting algorithms: A general analysis with localized complexities »
Yuting Wei · Fanny Yang · Martin Wainwright -
2017 Spotlight: Early stopping for kernel boosting algorithms: A general analysis with localized complexities »
Yuting Wei · Fanny Yang · Martin Wainwright -
2017 Oral: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright -
2017 Spotlight: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright