Timezone: »
We propose an extremely simple approach to regularize a single deterministic neural network to obtain improved accuracy and reliable uncertainty estimates. Our approach, on top of the cross-entropy loss, simply puts an entropy maximization regularizer corresponding to the predictive distribution in the regions of the embedding space between the class clusters. This is achieved by synthetically generating between-cluster samples via the convex combination of two images from {\em different} classes and maximizing the entropy on these samples. Such a data-dependent regularization guides the maximum likelihood estimation to prefer a solution that (1) maps out-of-distribution samples to high entropy regions (creating an entropy barrier); and (2) is more robust to the superficial input perturbations.We empirically demonstrate that Mix-MaxEnt consistently provides much improved classification accuracy, better calibrated probabilities for in-distribution data, and reliable uncertainty estimates when exposed to situations involving domain-shift and out-of-distribution samples.
Author Information
Francesco Pinto (University of Oxford)
Harry Yang (Facebook)
Ser Nam Lim (Facebook AI)
Philip Torr (University of Oxford)
Puneet Dokania (University of Oxford)
More from the Same Authors
-
2021 : Occluded Video Instance Segmentation: Dataset and ICCV 2021 Challenge »
Jiyang Qi · Yan Gao · Yao Hu · Xinggang Wang · Xiaoyu Liu · Xiang Bai · Serge Belongie · Alan Yuille · Philip Torr · Song Bai -
2021 : A Step Towards Efficient Evaluation of Complex Perception Tasks in Simulation »
Jonathan Sadeghi · Blaine Rogers · Sina Samangooei · Puneet Dokania · John Redford -
2021 : Are Vision Transformers Always More Robust Than Convolutional Neural Networks? »
Francesco Pinto · Philip Torr · Puneet Dokania -
2022 Poster: Using Mixup as a Regularizer Can Surprisingly Improve Accuracy & Out-of-Distribution Robustness »
Francesco Pinto · Harry Yang · Ser Nam Lim · Philip Torr · Puneet Dokania -
2022 Poster: Structure-Preserving 3D Garment Modeling with Neural Sewing Machines »
Xipeng Chen · Guangrun Wang · Dizhong Zhu · Xiaodan Liang · Philip Torr · Liang Lin -
2022 Poster: Learn what matters: cross-domain imitation learning with task-relevant embeddings »
Tim Franzmeyer · Philip Torr · João Henriques -
2022 Poster: Spartan: Differentiable Sparsity via Regularized Transportation »
Kai Sheng Tai · Taipeng Tian · Ser Nam Lim -
2022 Poster: Make Some Noise: Reliable and Efficient Single-Step Adversarial Training »
Pau de Jorge Aranda · Adel Bibi · Riccardo Volpi · Amartya Sanyal · Philip Torr · Gregory Rogez · Puneet Dokania -
2022 Poster: FedSR: A Simple and Effective Domain Generalization Method for Federated Learning »
A. Tuan Nguyen · Philip Torr · Ser Nam Lim -
2022 Poster: GAPX: Generalized Autoregressive Paraphrase-Identification X »
Yifei Zhou · Renyu Li · Hayden Housen · Ser Nam Lim -
2022 Poster: Few-Shot Fast-Adaptive Anomaly Detection »
Ze Wang · Yipin Zhou · Rui Wang · Tsung-Yu Lin · Ashish Shah · Ser Nam Lim -
2022 Poster: HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions »
Yongming Rao · Wenliang Zhao · Yansong Tang · Jie Zhou · Ser Nam Lim · Jiwen Lu -
2021 : Shape-Tailored Deep Neural Networks With PDEs »
Naeemullah Khan · Angira Sharma · Philip Torr · Ganesh Sundaramoorthi -
2021 Poster: Learning to Ground Multi-Agent Communication with Autoencoders »
Toru Lin · Jacob Huh · Christopher Stauffer · Ser Nam Lim · Phillip Isola -
2021 Poster: You Never Cluster Alone »
Yuming Shen · Ziyi Shen · Menghan Wang · Jie Qin · Philip Torr · Ling Shao -
2021 Poster: Looking Beyond Single Images for Contrastive Semantic Segmentation Learning »
FEIHU ZHANG · Philip Torr · Rene Ranftl · Stephan Richter -
2021 Poster: Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods »
Derek Lim · Felix Hohne · Xiuyu Li · Sijia Linda Huang · Vaishnavi Gupta · Omkar Bhalerao · Ser Nam Lim -
2021 Poster: FACMAC: Factored Multi-Agent Centralised Policy Gradients »
Bei Peng · Tabish Rashid · Christian Schroeder de Witt · Pierre-Alexandre Kamienny · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2021 Poster: NeRV: Neural Representations for Videos »
Hao Chen · Bo He · Hanyu Wang · Yixuan Ren · Ser Nam Lim · Abhinav Shrivastava -
2021 Poster: Do Different Tracking Tasks Require Different Appearance Models? »
Zhongdao Wang · Hengshuang Zhao · Ya-Li Li · Shengjin Wang · Philip Torr · Luca Bertinetto -
2021 Poster: Equivariant Manifold Flows »
Isay Katsman · Aaron Lou · Derek Lim · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2021 Poster: A Continuous Mapping For Augmentation Design »
Keyu Tian · Chen Lin · Ser Nam Lim · Wanli Ouyang · Puneet Dokania · Philip Torr -
2021 Poster: Overcoming the Convex Barrier for Simplex Inputs »
Harkirat Singh Behl · M. Pawan Kumar · Philip Torr · Krishnamurthy Dvijotham -
2020 Poster: STEER : Simple Temporal Regularization For Neural ODE »
Arnab Ghosh · Harkirat Singh Behl · Emilien Dupont · Philip Torr · Vinay Namboodiri -
2020 Poster: Better Set Representations For Relational Reasoning »
Qian Huang · Horace He · Abhay Singh · Yan Zhang · Ser Nam Lim · Austin Benson -
2020 Poster: Calibrating Deep Neural Networks using Focal Loss »
Jishnu Mukhoti · Viveka Kulharia · Amartya Sanyal · Stuart Golodetz · Philip Torr · Puneet Dokania -
2020 Poster: Neural Manifold Ordinary Differential Equations »
Aaron Lou · Derek Lim · Isay Katsman · Leo Huang · Qingxuan Jiang · Ser Nam Lim · Christopher De Sa -
2020 Poster: Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation »
Bowen Li · Xiaojuan Qi · Philip Torr · Thomas Lukasiewicz -
2020 Poster: Continual Learning in Low-rank Orthogonal Subspaces »
Arslan Chaudhry · Naeemullah Khan · Puneet Dokania · Philip Torr -
2019 : Coffee + Posters »
Changhao Chen · Nils Gählert · Edouard Leurent · Johannes Lehner · Apratim Bhattacharyya · Harkirat Singh Behl · Teck Yian Lim · Shiho Kim · Jelena Novosel · Błażej Osiński · Arindam Das · Ruobing Shen · Jeffrey Hawke · Joachim Sicking · Babak Shahian Jahromi · Theja Tulabandhula · Claudio Michaelis · Evgenia Rusak · WENHANG BAO · Hazem Rashed · JP Chen · Amin Ansari · Jaekwang Cha · Mohamed Zahran · Daniele Reda · Jinhyuk Kim · Kim Dohyun · Ho Suk · Junekyo Jhung · Alexander Kister · Matthias Fahrland · Adam Jakubowski · Piotr Miłoś · Jean Mercat · Bruno Arsenali · Silviu Homoceanu · Xiao-Yang Liu · Philip Torr · Ahmad El Sallab · Ibrahim Sobh · Anurag Arnab · Krzysztof Galias -
2019 Poster: Multi-Agent Common Knowledge Reinforcement Learning »
Christian Schroeder de Witt · Jakob Foerster · Gregory Farquhar · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2019 Poster: Controllable Text-to-Image Generation »
Bowen Li · Xiaojuan Qi · Thomas Lukasiewicz · Philip Torr -
2018 Poster: A Unified View of Piecewise Linear Neural Network Verification »
Rudy Bunel · Ilker Turkaslan · Philip Torr · Pushmeet Kohli · Pawan K Mudigonda -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 Poster: Adaptive Neural Compilation »
Rudy Bunel · Alban Desmaison · Pawan K Mudigonda · Pushmeet Kohli · Philip Torr -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2013 Poster: Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation »
Vibhav Vineet · Carsten Rother · Philip Torr -
2011 Poster: Learning Anchor Planes for Classification »
Ziming Zhang · Lubor Ladicky · Philip Torr · Amir Saffari -
2011 Demonstration: Online structured-output learning for real-time object tracking and detection »
Sam Hare · Amir Saffari · Philip Torr -
2008 Poster: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2008 Spotlight: Improved Moves for Truncated Convex Models »
Pawan K Mudigonda · Philip Torr -
2007 Oral: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr -
2007 Poster: An Analysis of Convex Relaxations for MAP Estimation »
Pawan K Mudigonda · Vladimir Kolmogorov · Philip Torr