Timezone: »
Machine learning often experiences distribution shifts between training and testing. We introduce a simple objective whose optima are \textit{exactly all} representations on which risk minimizers are guaranteed to be robust to Bayes preserving shifts, e.g., covariate shifts. Our objective has two components. First, a representation must remain discriminative, i.e., some predictor must be able to minimize the source and target risk. Second, the representation's support should be invariant across source and target. We make this practical by designing self-supervised methods that only use unlabelled data and augmentations. Our objectives achieve SOTA on DomainBed, and give insights into the robustness of recent methods, e.g., CLIP.
Author Information
Yann Dubois (Stanford University)
Yangjun Ruan (University of Toronto)
Chris Maddison (University of Toronto)
More from the Same Authors
-
2021 Spotlight: Lossy Compression for Lossless Prediction »
Yann Dubois · Benjamin Bloem-Reddy · Karen Ullrich · Chris Maddison -
2023 Poster: AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback »
Yann Dubois · Xuechen Li · Rohan Taori · Tianyi Zhang · Ishaan Gulrajani · Jimmy Ba · Carlos Guestrin · Percy Liang · Tatsunori Hashimoto -
2022 Poster: Improving Self-Supervised Learning by Characterizing Idealized Representations »
Yann Dubois · Stefano Ermon · Tatsunori Hashimoto · Percy Liang -
2021 Poster: Lossy Compression for Lossless Prediction »
Yann Dubois · Benjamin Bloem-Reddy · Karen Ullrich · Chris Maddison -
2020 Poster: Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes »
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner -
2020 Poster: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2020 Spotlight: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2019 Poster: FastSpeech: Fast, Robust and Controllable Text to Speech »
Yi Ren · Yangjun Ruan · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh