`

Timezone: »

 
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
Misha Laskin · Hao Liu · Xue Bin Peng · Denis Yarats · Aravind Rajeswaran · Pieter Abbeel
Event URL: https://openreview.net/forum?id=Z12zA99EFEi »
We introduce Contrastive Intrinsic Control (CIC) - an algorithm for unsupervised skill discovery that maximizes the mutual information between skills and state transitions. In contrast to most prior approaches, CIC uses a decomposition of the mutual information that explicitly incentivizes diverse behaviors by maximizing state entropy. We derive a novel lower bound estimate for the mutual information which combines a particle estimator for state entropy to generate diverse behaviors and contrastive learning to distill these behaviors into distinct skills. We evaluate our algorithm on the Unsupervised Reinforcement Learning Benchmark, which consists of a long reward-free pre-training phase followed by a short adaptation phase to downstream tasks with extrinsic rewards. We find that CIC improves on prior unsupervised skill discovery methods by $91\%$ and the next-leading overall exploration algorithm by $26\%$ in terms of downstream task performance.

Author Information

Misha Laskin (UC Berkeley)
Hao Liu (UC Berkeley)
Xue Bin Peng (University of California, Berkeley)
Denis Yarats (New York University)
Aravind Rajeswaran (FAIR / Facebook AI Research)
Pieter Abbeel (UC Berkeley & Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

More from the Same Authors