Timezone: »
Gaussian processes (GPs) are used to make medical and scientific decisions, including in cardiac care and monitoring of carbon dioxide emissions. But the choice of GP kernel is often somewhat arbitrary. In particular, uncountably many kernels typically align with qualitative prior knowledge (e.g. function smoothness or stationarity). But in practice, data analysts choose among a handful of convenient standard kernels (e.g. squared exponential). In the present work, we ask: Would decisions made with a GP differ under other, qualitatively interchangeable kernels? We show how to formulate this sensitivity analysis as a constrained optimization problem over a finite-dimensional space. We can then use standard optimizers to identify substantive changes in relevant decisions made with a GP. We demonstrate in both synthetic and real-world examples that decisions made with a GP can exhibit substantial sensitivity to kernel choice, even when prior draws are qualitatively interchangeable to a user.
Author Information
Will Stephenson (MIT)
Soumya Ghosh (MIT-IBM Watson AI Lab, IBM Research)
Tin Nguyen (MIT)
Mikhail Yurochkin (IBM Research, MIT-IBM Watson AI Lab)
Sameer Deshpande (University of Wisconsin--Madison)
Tamara Broderick (MIT)
More from the Same Authors
-
2022 : Are you using test log-likelihood correctly? »
Sameer Deshpande · Soumya Ghosh · Tin Nguyen · Tamara Broderick -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2021 Workshop: Your Model is Wrong: Robustness and misspecification in probabilistic modeling »
Diana Cai · Sameer Deshpande · Michael Hughes · Tamara Broderick · Trevor Campbell · Nick Foti · Barbara Engelhardt · Sinead Williamson -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: Does enforcing fairness mitigate biases caused by subpopulation shift? »
Subha Maity · Debarghya Mukherjee · Mikhail Yurochkin · Yuekai Sun -
2021 Poster: Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression »
Will Stephenson · Zachary Frangella · Madeleine Udell · Tamara Broderick -
2021 Poster: Post-processing for Individual Fairness »
Felix Petersen · Debarghya Mukherjee · Yuekai Sun · Mikhail Yurochkin -
2021 Poster: For high-dimensional hierarchical models, consider exchangeability of effects across covariates instead of across datasets »
Brian Trippe · Hilary Finucane · Tamara Broderick -
2021 Poster: On sensitivity of meta-learning to support data »
Mayank Agarwal · Mikhail Yurochkin · Yuekai Sun -
2020 : Panel & Closing »
Tamara Broderick · Laurent Dinh · Neil Lawrence · Kristian Lum · Hanna Wallach · Sinead Williamson -
2020 : Tamara Broderick »
Tamara Broderick -
2020 Poster: Continuous Regularized Wasserstein Barycenters »
Lingxiao Li · Aude Genevay · Mikhail Yurochkin · Justin Solomon -
2020 Poster: Approximate Cross-Validation for Structured Models »
Soumya Ghosh · Will Stephenson · Tin Nguyen · Sameer Deshpande · Tamara Broderick -
2020 Poster: Approximate Cross-Validation with Low-Rank Data in High Dimensions »
Will Stephenson · Madeleine Udell · Tamara Broderick -
2020 Demonstration: IBM Federated Learning Community Edition: An Interactive Demonstration »
Laura Wynter · Chaitanya Kumar · Pengqian Yu · Mikhail Yurochkin · Amogh Tarcar -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · GaĆ«l Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Alleviating Label Switching with Optimal Transport »
Pierre Monteiller · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon · Mikhail Yurochkin -
2019 Poster: Hierarchical Optimal Transport for Document Representation »
Mikhail Yurochkin · Sebastian Claici · Edward Chien · Farzaneh Mirzazadeh · Justin Solomon -
2019 Poster: Scalable inference of topic evolution via models for latent geometric structures »
Mikhail Yurochkin · Zhiwei Fan · Aritra Guha · Paraschos Koutris · XuanLong Nguyen -
2019 Poster: Statistical Model Aggregation via Parameter Matching »
Mikhail Yurochkin · Mayank Agarwal · Soumya Ghosh · Kristjan Greenewald · Nghia Hoang -
2018 Workshop: All of Bayesian Nonparametrics (Especially the Useful Bits) »
Diana Cai · Trevor Campbell · Michael Hughes · Tamara Broderick · Nick Foti · Sinead Williamson -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2017 Spotlight: PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference »
Jonathan Huggins · Ryan Adams · Tamara Broderick -
2016 : Tamara Broderick: Foundations Talk »
Tamara Broderick -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Workshop: Practical Bayesian Nonparametrics »
Nick Foti · Tamara Broderick · Trevor Campbell · Michael Hughes · Jeffrey Miller · Aaron Schein · Sinead Williamson · Yanxun Xu -
2016 Poster: Coresets for Scalable Bayesian Logistic Regression »
Jonathan Huggins · Trevor Campbell · Tamara Broderick -
2016 Poster: Edge-exchangeable graphs and sparsity »
Diana Cai · Trevor Campbell · Tamara Broderick -
2015 Workshop: Bayesian Nonparametrics: The Next Generation »
Tamara Broderick · Nick Foti · Aaron Schein · Alex Tank · Hanna Wallach · Sinead Williamson -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2015 Spotlight: Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes »
Ryan Giordano · Tamara Broderick · Michael Jordan -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2013 Poster: Optimistic Concurrency Control for Distributed Unsupervised Learning »
Xinghao Pan · Joseph Gonzalez · Stefanie Jegelka · Tamara Broderick · Michael Jordan -
2013 Poster: Streaming Variational Bayes »
Tamara Broderick · Nicholas Boyd · Andre Wibisono · Ashia C Wilson · Michael Jordan -
2012 Poster: From Deformations to Parts: Motion-based Segmentation of 3D Objects »
Soumya Ghosh · Erik Sudderth · Matthew Loper · Michael J Black -
2011 Poster: Spatial distance dependent Chinese Restaurant Process for image segmentation »
Soumya Ghosh · Andrei B Ungureanu · Erik Sudderth · David Blei